Studies on Chromatographic Properties of 2,4,6-Trinitrophenol-Modified Zirconia-Magnesia Stationary Phase for the Separation of Fullerences

YU Qiongwei, SHI Zhiguo, FENG Yuqi, DA Shilu, LI Ting
Department of Chemistry, Wuhan University, Wuhan 430072, China

Abstract A stationary phase for the separation of C_{60} and C_{70} was prepared by modifying zirconia-magnesia composites with 2,4,6-trinitrophenol. The modified composite was characterized by using elemental analysis, diffused reflectance Fourier transform infrared spectroscopy and specific surface area. The effects of the toluene content in toluene-cyclohexane mobile phase and the column temperature on the separation of C_{60} and C_{70} were examined. Meanwhile, the separation of fullerences including 3% high fullerences was investigated at the temperature of 348 K using pure toluene as the mobile phase. The results showed that the stationary phase of 2,4,6-trinitrophenol-modified zirconia-magnesia composite exhibits advantage in the separation of C_{60} and C_{70} and strong temperature dependence. The retention times of C_{60} and C_{70} and their separation factor on the stationary phase increase with the increase of the column temperature. The stationary phase is a potential packing material for separation of fullerences in preparative scale.

Key words 2,4,6-trinitrophenol, zirconia-magnesia composites, stationary phase, high performance liquid chromatography, fullerenes

富勒烯是由偶数个碳原子围成的共轭三维结构笼状分子,这些笼状分子内外表面具有很强的三阶非线性、电子亲和力和还原性。其独特的性质使其在物理、化学、材料、能源、信息、生物、医药、生命等科学领域显示出巨大的应用潜力和重要的科学意义。目前,富勒烯的制备通常以石墨为原料,产物是 C_{60} 和 C_{70} 等多种富勒烯的混合物,由于彼此分子结构非常相似,物理化学性质极为相近,分离具有较大的难度。色谱法是目前混合物分离的最有效手段之一,它具有分离效果好、分离速度快等优点,在富勒烯分离纯化中显示出独有的优势。特别是基于电荷传递机理的色谱方法在富勒烯分离纯化中表
氧化锆及其他复合氧化物具有更好的路易斯酸吸附性能和适合色谱应用的孔径和孔容。鉴于此,本文开展了锆基质复合氧化物表面改性,制备了各种色谱固定相。胡玉玲等分别采用二硝基苯基氨基甲酸酯、二硝基苯胺基键合硅胶固定相分离了富勒烯。研究表明,锆镁复合氧化物比锆铈和锆钙复合氧化物的覆盖度高富勒烯)的分离情况。研究了具有富电子性质的四硝基苯酚改性锆镁复合氧化物固定相的色谱性能。利用三硝基苯酚对锆镁复合氧化物填料改性,得到了固定相,通过电荷传递作用分离了四硝基苯酚在固定相表面的覆盖度为。

固定相芘乙基等组成。利用甲苯、环己烷为分析纯试剂(上海试剂站),三硝基苯酚为化学纯(广东台山化工厂),将甲苯,混合后置于甲苯淋洗后,在甲苯中加热回流。取粒径为的不锈钢柱中,并加入。

1 实验部分
1.1 仪器与试剂
HPLC高效液相色谱系统由Kromat-Chrom \[20\],色谱柱恒温箱及美国)。搅拌等组成。

1.2 荧光光谱

2 固定相的制备

2.1 荧光光谱

6. 76 nm \[20\] 0. 258 cm\(^3\)/g \[20\] 85 m\(^2\)/g \[20\] Mg/Zr \[20\] 9. 72 \[20\] 2H6-\[20\] 相对分子质量为284 g/mol,其值大于在相同条件下得到的。三维物相对照图。因此,可通过热重分析,能够通过路易斯酸碱性固定相。

3 实验结果与讨论
3.1 固定相表征

3.2 固定相色谱性能

3.3 流动相组成对柱效的影响

3.4 柱温对柱效的影响

3.5 流动相流速对柱效的影响

3.6 固定相稳定性

3.7 固定相的选择性

3.8 固定相重复性

4 结论
色 谱 第
变换红外光谱图。由固定相的光谱可知:为芳烃—的伸缩振动吸收峰;在和之间为苯环骨架的振动吸收峰;在之间为—的伸缩振动吸收峰;为—的伸缩振动吸收峰,与三硝基苯酚的标准谱图相比,该吸收峰略向高波数方向移动。以上结果表明,三硝基苯酚已成功地化学吸附到锆镁复合氧化物表面。

图锆镁复合氧化物和三硝基苯酚改性锆镁复合氧化物的傅里叶变换红外光谱图。

图为甲苯.环己烷混合溶液流动相中甲苯的含量对.和.在固定相上的保留因子和分离因子的影响。图:和的保留因子和分离因子随流动相中甲苯含量变化的关系图。从图可以看出,.和.的保留因子和分离因子均随甲苯含量的增加而减小。当甲苯的含量低.时,.和.能达到完全基线分离,说明对富勒烯有较强的保留和分离能力。当甲苯的含量为.时,.的柱效为.塔板,.的柱效为.塔板,综合考虑分离效果、柱效、柱容量的关系,流动相中甲苯的含量以.为宜。

温度对分离的影响
在液相色谱中,温度是影响溶质保留和分离的重要因素之一。等比较了富勒烯在、二硝基苯酰基苯基苷氨酸(和"NMN)固定相上的保留行为与温度的相关性,结果表明,富勒烯在上显示正常的温度效应,即随着柱温的提高,溶质的保留下降;而在和"NMN上,随着色谱柱温度的提高,.和.在这两种固定相上的保留均有所增加,显示出反常的温度效应。等研究了富勒烯在四苯基卟啉("MM)键合硅胶固定相上的保留与温度的相关性,结果显示出正常的温度效应。这些结果说明富勒烯在不同固定相上的温度效应不同。因此,我们考察了.和.在固定相上的温度相关性。图是在以甲苯为流动相的条件下,.、.、蒽和荧蒽的保留因子随温度变化的曲线。

<table>
<thead>
<tr>
<th>Stationary phase</th>
<th>Mobile phase</th>
<th>Compound</th>
<th>ΔH/ΔS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZM</td>
<td>C_{60}</td>
<td>2.53</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>C_{70}</td>
<td>3.64</td>
<td>11.40</td>
</tr>
<tr>
<td></td>
<td>C_{79}</td>
<td>1.80</td>
<td>22.00</td>
</tr>
<tr>
<td>anthracene</td>
<td>fluoranthene</td>
<td>-3.36</td>
<td>-23.80</td>
</tr>
<tr>
<td>B</td>
<td>C_{60}</td>
<td>13.27</td>
<td>55.86</td>
</tr>
<tr>
<td></td>
<td>C_{70}</td>
<td>28.22</td>
<td>129.74</td>
</tr>
<tr>
<td>TNZ A(17)</td>
<td>C_{60}</td>
<td>13.51</td>
<td>46.00</td>
</tr>
<tr>
<td></td>
<td>C_{70}</td>
<td>17.08</td>
<td>64.00</td>
</tr>
<tr>
<td>TNPCA-Z(18) B</td>
<td>C_{60}</td>
<td>9.82</td>
<td>28.69</td>
</tr>
<tr>
<td></td>
<td>C_{70}</td>
<td>13.24</td>
<td>43.89</td>
</tr>
<tr>
<td>TNPECE-C(19) B</td>
<td>C_{60}</td>
<td>12.44</td>
<td>45.44</td>
</tr>
<tr>
<td></td>
<td>C_{70}</td>
<td>14.36</td>
<td>57.54</td>
</tr>
</tbody>
</table>

Stationary phases: TZM 2-[4-4]-trinitrophenol-modified zirconia-magnesia, TNZA 2-[4-4]-trinitrophenol-modified zirconia-alumina, TNPCA-Z 2-[4-4]-trinitrophenol-modified calcia-zirconia, TNPECE-C 2-[4-4]-trinitrophenol-modified ceria-zirconia.

Mobile phases: A. pure toluene, B. toluene-cyclohexane 50:50 v/v, Flow rate 1.0 mL/min, UV detection 380 nm.

2.4

Fig. 4 Chromatograms of C_{60} and C_{70} on the TZM column at different temperatures

a. 298 K, b. 308 K, c. 318 K, d. 328 K, e. 338 K, f. 348 K.

Mobile phase: toluene, Flow rate 1.0 mL/min, UV detection 380 nm.

Fig. 5 Separation of fullerene mixture including 3% high fullerenes on a TZM column

TZM column 150 mm × 4.6 mm i. d. flow rate 1.0 mL/min, UV detection at 410 nm, amount injected 10 μL saturated toluene solution of fullerenes, temperature 348 K.

1. C_{60}, 2. C_{70}, 3. high fullerenes.
积比

参考文献：

分离的潜力。

柱制备简单、价廉、柱容量好，对

($$\text{C}_6\text{O}_4\text{C}_7\text{O}_4$$) 15 min

18[18] Hu Y L[18], Feng Y Q[18], Da S L[18], Anal Se[18], Suppl[18], 2001(17):a321

