Separation of hydroxybenzenes and amines by microcolumn liquid chromatography with imidazolium functionalized silica stationary phase

LI Guang¹, NIU Jingang¹, LIU Xia¹, JIANG Shengxiang¹
1. Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2. Graduate University of Chinese Academy of Science, Beijing 100039, China

Abstract Microcolumn liquid chromatography (µ-LC) has been received extensive attention in recent years because of several key advantages such as the ability to work at very low flow rates which leads to a significantly lower solvent consumption, the possibility to inject very low sample size, the enhanced detection performance with the use of concentration sensitive detection devices as a result of the strongly reduced chromatographic dilution during the separation process, the availability to hyphenate to mass spectrometry (MS) et al. A microcolumn liquid chromatographic system was set up. The chromatographic separations of some ordinary hydroxybenzenes and amines were performed with different mobile phases using the weak hydrophobic interaction of imidazolium functionalized silica stationary phase on a microcolumn 150 mm × 0.25 mm. The results showed that the organic compounds could be well separated when a few organic solvents were added in the mobile phase and some weak hydrophobic organic compounds such as phenols could be separated using only water as the mobile phase. For the advantages of microcolumn liquid chromatography this experiment avoided or significantly reduced the use of organic solvents which contaminated the environment. This system provided a base for microcolumn liquid chromatography-mass spectrometry (µ-LC-MS). Key words microcolumn liquid chromatography (µ-LC), ionic liquids (IL), imidazolium functionalized silica stationary phase, hydroxybenzenes, amines

*Corresponding author. Tel. (0931) 4968203; E-mail: gsluxia@lzb.ac.cn. © National University of China No. 20527005; No. 20775084.
第
er
"期
李
广,等:咪唑键合硅胶固定相微柱液相色谱分离酚类和胺类化合物

剂无法比拟的优点,如不挥发、不易燃、溶解性和稳定性好等而作为一种新型介质被广泛应用于有机合成、催化、电化学、分离分析等化学化工的各个领域。

离子液体作为一种新型介质在分离分析中也已有不少应用。我们实验室在离子液体应用于液相色谱方面做过不少研究工作,主要包括离子液体用作流动相添加剂和离子液体改性硅胶用作色谱固定相两个方面。其中在离子液体改性硅胶方面采用多种键合方法制备了含有离子液体结构的改性硅胶固定相,并用于色谱分离。咪唑是一种有机芳香杂环化合物,咪唑环阳离子是组成离子液体的最普通的一种阳离子。咪唑键合硅胶有着很强的阴离子交换作用,是一种很好的离子色谱固定相,我们对其离子色谱性能也进行了详细的研究。

在本文研究中,我们自制了微柱液相色谱系统,将咪唑键合硅胶固定相填充到毛细管中,并用于酚类和胺类化合物的分离。对咪唑键合硅胶固定相的反相色谱行为进行了探讨。此自制微柱液相色谱系统为下一步微柱液相色谱质谱联用奠定了一定的基础。

1 实验部分
1.1 仪器与试剂

高效液相色谱泵(日本岛津公司);型高效毛细管电泳仪,配紫外检测器(北京新

技术研究所);微分流阀(上海通微分析技术仪器有限公司);色谱工作站(南京千谱软件有限公司);弹性石英毛细管(Rheodyne)。

氯丙基三甲氧基硅烷(湖北荆州江汉精细化工厂);甲苯(分析纯,重蒸);咪唑、甲醇、乙腈、四氯化碳均为分析纯;硅胶(实验室合成);实验用水为重蒸去离子水;被分析物均为分析纯。

1.2 微柱液相色谱系统的建立

与常规液相色谱系统相比,微柱液相色谱系统要求更低的流量、更小的死体积和更小进样体积的进样阀。为此,本实验采用毛细管电泳所用的柱上紫外检测器。另外,由于进样器最小进样量、泵最小流量和稳定性的限制,需采用分流技术。同时为了减小样品因在进样阀内的扩散而造成的峰展宽,本文采用定量管进样阀。图1为改造后的微柱液相色谱系统装置示意图。

1.3 筛板的制备

本实验采用较为简单的溶胶-凝胶法制备柱上筛板。

1.4 液相色谱微柱的制备

1.4.1 咪唑键合硅胶固定相的合成

相据文献的方法合成咪唑键合硅胶固定相。第一步,将酸化处理过的硅胶在干燥的甲苯中与适量的氯丙基三甲氧基硅烷回流反应,冷却后抽滤洗涤、真空干燥,制得氯丙基硅胶;第二步,氯丙基硅胶与咪唑在甲苯中搅拌回流反应,冷却后抽滤洗涤、真空干燥,制得咪唑键合硅胶固定相。

图2为匀浆法填充毛细管装置示意图。称取咪唑键合硅胶固定相,用四氯化碳配制成匀浆液,超声混合均匀后装入匀浆罐中,匀浆罐与高压泵相连并置于超声浴中,以甲醇为顶替液在压力下将匀浆液压入毛细管中。填充完毕后停止超声,同时逐步降低流速使柱压慢慢降为常压,之后用水在高于运行压力下冲压。卸下此柱,切去柱头一段未填充均匀的部分,使有效柱长为。

最后在距筛板后的地方烧制左右的窗口进行柱上检测。

1.4.2 液相色谱微柱的填充

微柱的填充主要有匀浆法、干法和电动填充法三种方法,其中匀浆法是最常用的方法。本文采用匀浆法进行填充。称取咪唑键合硅胶固定相,用四氯化碳配制成匀浆液,超声混合均匀后装入匀浆罐中,匀浆罐与高压泵相连并置于超声浴中,以甲醇为顶替液在压力下将匀浆液压入毛细管中。填充完毕后停止超声,同时逐步降低流速使柱压慢慢降为常压,之后用水在高于运行压力下冲压。卸下此柱,切去柱头一段未填充均匀的部分,使有效柱长为。

最后在距筛板后的地方烧制左右的窗口进行柱上检测。
1.5
色谱条件
色谱柱:咪唑键合硅胶液相色谱微柱(5:95水−乙腈,3 μL/min,254 nm)

2
2.1
酚类化合物的分离
在自制的微柱液相色谱体系下用不同的流动相对酚类化合物进行了分离,图a和图b是分别以纯水和乙腈水(体积比为5:95)为流动相对这5种酚类化合物进行分离的色谱图,图c是以甲醇−水(体积比为5:95)为流动相对这5种酚类化合物进行分离的色谱图。

从图a和图b中可以看出,以纯水和乙腈水为流动相都能将对氨基酚、苯酚、间苯二酚、间苯三酚和间硝基酚这5种酚类化合物分开,但是以纯水为流动相分离时这5种酚的分离度和峰形与以乙腈水为流动相相比要差一些。从两图对比中我们还可以看出,与纯水为流动相比较,水中加入乙腈为流动相,酚的保留时间都有所缩短,这是因为固定相与被分析物酚之间存在着反相疏水作用。

从图c对这5种酚的分离中可以看出,咪唑键合硅胶微柱液相色谱和常规液相色谱一样,只要选取适当的分离条件就可以将一些结构相似或是较难分离的化合物(如间氨基酚与对氨基酚、间苯三酚与对氯代酚)分开。

Fig. 3 Chromatograms of the separation of hydroxybenzenes by different mobile phases
Chromatographic conditions: column, imidazolium functionalized silica microcolumn(150 mm × 0.25 mm), flow rate, 3 μL/min; detection wavelength, 254 nm; mobile phases: a. water; b. acetonitrile-water(5:95 v/v); c. methanol-acetonitrile-water(5:5:90 v/v/v).

Peaks identifications: 1. p-aminophenol; 2. m-aminophenol; 3. phenol; 4. resorcinol; 5. phloroglucinol; 6. p-chlorophenol; 7. m-nitrophenol.

2.2
胺类化合物的分离
在微柱液相色谱体系下对对苯二胺、间硝基苯胺、邻硝基苯胺、联苯胺和萘胺5种芳胺化合物进行了分离。首先考察了流动相中不同的甲醇含量对这5种芳胺化合物保留因子的影响,结果见图。

从图中可以看出,随着流动相中有机溶剂甲醇含量的增加,芳胺化合物的保留因子都不同程度地有所减小;同时随着被分析物芳胺疏水性的增强,保留强度都明显地增大。图a和图b是分别以水和甲醇−水(体积比为5:95)为流动相对这5种芳胺的色谱分离图。从两图对比中可以看出,当以纯水作流动相时,联苯胺和萘胺拖尾严重且相互分开;而以甲醇−水作流动相时,这种情况则得到了较好的改善。这是由于芳胺的疏水性较大,随着芳香性的增加疏水性变得更强;同时由于咪唑是一个有机芳香杂环结构,与芳香性分子之间存在着一定的

Fig. 4 Effect of methanol content in mobile phases on the retention factor of amines
Except the mobile phase other conditions are the same as in Fig. 3.
1. p-phenylenediamine; 2. m-nitroaniline; 3. o-nitroaniline; 4. benzidine; 5. β-naphthylamine.
5

Fig. 5 Chromatograms of amines by different mobile phases

Mobile phases: a. water b. methanol-water 30:70 v/v other conditions are the same as in Fig. 3.

Peak identifications: 1. p-phenylenediamine 2. m-nitroaniline 3. o-nitroaniline 4. benzidine 5. \(\beta \)-naphthylamine.

3
