Determination of dimethyl fumarate in leather and textiles by gas chromatography-tandem mass spectrometry with solid phase extraction

ZHAO Yang* QI Xiaoxia

Abstract An effective method for the determination of dimethyl fumarate (DMF) in leather and textiles by gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed. Samples of leather or textiles were extracted with ethyl acetate and concentrated DMF was separated on a VF-5ms column and analyzed by GC-MS/MS after solid phase extraction (SPE) process. The result shows that this method is sensitive, accurate and reliable. The linear relationship was perfect and the interference with background signal was further eliminated after pretreatment SPE and GC-MS/MS analytical conditions were optimized. The average recoveries of DMF in leather and textiles at three levels ranged from 84% to 93% the relative standard deviations n = 6 were lower than 7.2% the limits of detection in the range from 0.012 to 0.039 mg/kg S/N = 3 the correlation coefficient was 0.9990 over the range 0.05–100 mg/L. It has been applied to routine determination of DMF in leather and textiles with satisfactory results.

Key words gas chromatography-tandem mass spectrometry GC-MS/MS solid phase extraction SPE dimethyl fumarate DMF leather textiles

* 通讯联系人: 赵洋, 硕士研究生, 助理工程师

基金项目: 中国皮革和制鞋工业研究院项目

收稿日期: 2010年1月3日

文献标识码: A 文章编号: 1000-8718 201001-0054-05

富马酸二甲酯（DMF）学名反丁烯二酸二甲酯，作为新型防霉剂，本身具有低毒高效、广谱抗菌、持久稳定等特点。

20世纪 latter decades 后，DMF 被广泛应用于皮革、纺织原料及其制品的杀菌及防霉处理。皮革中的胶原蛋白为霉菌生长提供营养源，因此在皮革生产加工过程中添加含有 DMF 的防霉剂或使用 DMF 与硫酸钠、明矾等复合而成的腌制剂腌制带毛生皮，能起到防霉防腐的作用 [1]。此外，将含有 DMF 的防潮袋置于皮鞋、家具、服装的包装内，可防止产品在运输和贮存过程中发霉。由于 DMF 在常温下升华而具有熏蒸性，皮肤接触后易引起过敏、湿疹、灼伤等症状；同时 DMF 水解后生成甲醇，对眼睛的刺激较大。因此，DMF 的生产及应用在世界范围内引起广泛关注。
气相色谱串联质谱法测定皮革和纺织品中的富马酸二甲酯

欧盟委员会决议草案中规定不允许含有富马酸二甲酯的消费品投放欧洲市场，规定输欧盟消费品（特别是家具和鞋类）中富马酸二甲酯含量不得超过2%。

美国服装鞋类协会（ACFIA）公布的全球限制物质名单（GSL）第四版修正稿中包括富马酸二甲酯，涉及的最终产品主要有家用纺织品、服装和鞋类。为确保皮革、纺织品的安全卫生，避免和减少富马酸二甲酯对消费者身体健康的损害，应对可能由此引发的绿色壁垒和贸易摩擦，积极开发科学、高效的检测方法具有重要的实际意义。据文献报道，食品行业中检测富马酸二甲酯主要采用气相色谱法（GC）、气相色谱-质谱联用法（GC-MS）、高效液相色谱法（HPLC）和薄层色谱法（TLC），皮革中的富马酸二甲酯可采用离心净化、GC-MS进行定性、定量分析。但实际操作中发现，由于皮革、纺织品种类繁多，加工过程中添加大量助剂、染料，且皮革含有大量油脂和胶原蛋白，致使样品本底存在无法净化掉的复杂干扰物，一级质谱全扫描模式（GC-MS/MS）采集数据得到的总离子流图几乎被各种杂质峰覆盖，不但增加了解析图谱的难度，还降低了仪器的分辨率和灵敏度。

本文研究固相萃取（SPE）技术净化分离样品，气相色谱-串联质谱法（GC-MS/MS）对皮革和纺织品中的富马酸二甲酯进行定性、定量分析，并建立了一套准确、高效、灵敏、精密的检测方法。

实验部分

1. 仪器与试剂

1.1 仪器

Varian CP 3800 Saturn 2200 Workstation Version 6.20，NIST 2005

1.2 试剂

乙酸乙酯、二氯甲烷、丙酮和甲醇均为色谱纯。

1.3 试剂

柱：C18 SPE柱、SPE柱和中性氧化铝柱的规格均为100 μg/mL，均购于中国天津博纳艾杰尔科技有限公司。

富马酸二甲酯标准品购于德国公司，用乙酸乙酯配制成0.1 mg/mL的储备液。

2. 样品预处理

准确称取100 mg/6 mL的样品，置于具塞锥形瓶中，加入1 mL乙酸乙酯，超声提取10 min，将萃取液移至圆底烧瓶；按同样方法再处理2次，合并萃取液。在不高于40 ℃的真空旋转蒸发器中浓缩萃取液至2 mL，将其转移到具塞刻度离心管，用少量乙酸乙酯淋洗圆底烧瓶，洗液并入具塞刻度离心管，最后用乙酸乙酯定容至4 mL，在1000 r/min的转速条件下离心10 min，取上清液经中性氧化铝小柱净化分离，用乙酸乙酯淋洗、定容至4 mL，用于GC-MS/MS分析。

处理纺织样品（国内企业提供的棉布、真丝、涤纶、尼龙）时，称取200 mg样品，使用针头过滤器替代中性氧化铝小柱净化萃取液，其他步骤与皮革预处理方法相同。

2.1 色谱与质谱条件

色谱柱：HP-5MS（30 m × 0.25 mm × 0.25 μm/µm），He（纯度99.999%），1.0 μL/µL，载气流速100 cm³/min，柱温50 ℃ 2 min，10 ℃/min，220 ℃ 5 min

离子源温度70 eV，连接管温度120 ℃，选定m/z 113和m/z 113；m/z 113和m/z 113；m/z 113；m/z 113；m/z 113；m/z 113；m/z 113；m/z 113；m/z 113

CID电压0.5 V，检测方式：全离子扫描。

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Leather</th>
<th>Textile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl acetate</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>Methanol</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Acetone</td>
<td>76</td>
<td>81</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>83</td>
<td>79</td>
</tr>
</tbody>
</table>

2.1.2 结果与讨论

样品预处理条件的优化

提取溶剂的选择

不同溶剂对皮革和纺织品中富马酸二甲酯的萃取效果

固相萃取柱的选择

由于皮革和纺织品加工过程中添加大量助剂、染料，且皮革和毛皮中含有大量油脂和胶原蛋白，不但污染色谱柱，还会在质谱检测时产生大量杂质离子，影响目标化合物的定性、定量分析，因此有必要对萃取液进行净化分离。分别采用不同规格的中性氧化铝、C18 SPE柱、SPE柱和弗罗里硅土柱吸附样品中的油脂、助剂和染料等干扰物质。结果表明，中性氧化铝小柱能吸附油脂等强极性的化合物，中性氧化铝小柱能吸附油脂等强极性的化合物，在保证较高GC-MS/MS分析。

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Leather</th>
<th>Textile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl acetate</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>Methanol</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Acetone</td>
<td>76</td>
<td>81</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>83</td>
<td>79</td>
</tr>
</tbody>
</table>
在常温下易挥发，为了提高检测方法的回收率，整个预处理过程应尽量采取半封闭操作。

使用柱对样品进行净化分离，操作快捷，减少干扰，回收效果较好。

质谱裂解机理的一级质谱图以(基峰)，几乎看不到(分子离子峰)。由此推断在分子离子的碎裂反应过程中，诱导断裂是优势反应。选择作母离子进行二级质谱碎裂，发生诱导断裂脱去羰基得碎片离子。选择作母离子进行三级质谱碎裂，再次发生诱导断裂脱去OCH_3。选择作母离子进行二级质谱碎裂，发生诱导断裂脱去OCH_3。

质谱条件优化

为提高检测的准确性和灵敏度，发挥离子阱质谱仪的功能优势，需要对待测物质进行一系列参数设置和优化，其中主要应考虑特征离子（母离子、定性离子、定量离子）、裂解方式、电压、激发储存水平等。

特征离子的选择是将母离子进一步裂解成子离子，获得更加丰富的质量、结构信息。因此，选择合适的特征离子对于提高方法的准确性和灵敏度至关重要。理论上讲，相对丰度高的母离子可以产生较强的信号；但是，如果离子质量数低，尽管其具有较高的相对丰度，仍然不能产生足够的子离子或无法得到较高的信噪比，从而影响定性、定量分析结果的准确。所以，母离子通常选择分子离子或相对丰度较大、高质量端的一级碎片离子。此外，所选母离子应反映该物质的独有特征，从而避免保留时间相近的待测物质、杂质及柱流失碎片离子的干扰。本实验选择一级质谱图的基峰作母离子进行分析。

根据欧盟提出的鉴定分值原则：采用低分辨单级质谱检测每个离子仅分，高分辨质谱为分，而串联质谱的母离子为分、子离子为分。所以选择个母离子和个子离子作定性离子（鉴定分值为分）。此外，标准溶液自建谱库。检测未知样品时，若在分析时间段内，母离子和两个定性子离子均出现，且离子的丰度比与标准谱图一致（偏差小于分），则可初步判定样品中存在。
电压太高,母离子完全碎裂,子离子的质量数和相对丰度偏小,受基质干扰的几率增多;电压太低,母离子保持原状,子离子碎片数量少、相对丰度低,无法对待测物质进行定性、定量分析。使用质谱工作站提供的自动程序确定最佳电压为。此时,谱图中得到两个相对丰度较大的子离子和的相对丰度约为子离子的。

图不同检测模式下加标皮革样品的和质谱图。以激发存储水平为例,设定激发存储水平与所用的电压波形有关,其作用是将选择的离子存储于阱内,按照母离子质量数的。设定激发存储水平可以使母离子位于离子阱的中心。质谱工作站根据母离子质量数及分析条件自动计算的激发存储水平为。

取储备液用甲醇逐级稀释成系列标准溶液,按节所述测定,以各自的质量浓度对峰面积进行线性回归,得方程。结果表明,在范围内呈良好的线性关系。以计算方法的检出限,测定牛皮革、羊皮革、水貂毛皮、獭兔毛皮、棉布、真丝、涤纶和尼龙种不同基体中的检出限分别为和和和和和和和和。均能满足检测分析要求。

分别向空白皮革、纺织样品中添加和个含量水平的标准溶液,进行回收率试验,每个水平平行测定次,并计算相对标准偏差。由表可知,皮革样品的平均回收率为;纺织样品的平均回收率为之间,小于,能够满足检测分析要求。
和质谱图,比较两者后发现,由于皮革中的杂质种类多且含量高,采用**MS/MS**模式检测时,谱图十分复杂,杂质峰几乎遍及整个谱图,造成对待测物质的覆盖,致使色谱峰不易分辨;质谱图(**MS**())中**&!'**的特征离子、杂质和柱流失的离子掺杂在一起,影响定性离子的相对丰度比。采用**ESI**模式检测时,由于仅选择母离子进行碰撞裂解,采集子离子碎片信息。因此,**MS/MS**谱图简单清晰,明显检出**&!'**的色谱峰;质谱图排除其他离子信号干扰,确保特征离子的相对丰度比例准确,自建谱库检索匹配度较高。

纺织品中杂质较少,但**ESI**法对其依然适用且简化谱图效果显著。提高**ESI**灵敏度由表(不同检测模式下信噪比和检出限(2008)&)的比较可知,**ESI**模式采集离子信号选择性小,尤其在检测皮革、毛皮等杂质干扰严重的样品时,噪声响应较高,致使信噪比和灵敏度降低;**ESI**模式对母离子和子离子进行双重选择,总离子信号减小,同时很大程度上降低了基线噪声,信噪比和**ESI**模式相比有显著提高。

3. 不同基体的测定
对**&!'**种皮革和纺织品样品进行加标回收试验,加标水平为**"$+$**(. + /..。结果显示牛皮革、羊皮革、水貂毛皮、獭兔毛皮、棉布、真丝、涤纶和尼龙中**&!'**的平均回收率(2008)&%-%分别为0.0\%-,0.0\%,0.0\%,-0.0\%,-0.0\%,-0.0\%,-0.0\%,-0.0\%和0.0\%。不同基体的平均回收率在0.0\%-,0.0\%之间,表明该方法适用于皮革、毛皮、天然纤维、化学纤维中含有的**&!'**的定性、定量分析。

表3 比较不同检测模式下信噪比和检出限(S/N = 3)的S/N比值

<table>
<thead>
<tr>
<th>Sample</th>
<th>Signal</th>
<th>Noise</th>
<th>S/N</th>
<th>LOD(μg/kg)</th>
<th>Signal</th>
<th>Noise</th>
<th>S/N</th>
<th>LOD(μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather</td>
<td>4193</td>
<td>467</td>
<td>9</td>
<td>0.334</td>
<td>255</td>
<td>1</td>
<td>255</td>
<td>0.012</td>
</tr>
<tr>
<td>Textile</td>
<td>4069</td>
<td>520</td>
<td>8</td>
<td>0.940</td>
<td>192</td>
<td>1</td>
<td>192</td>
<td>0.039</td>
</tr>
</tbody>
</table>

参考文献