Research developments for the applications of carbon nanotubes in separation science

WU Chunxia, WANG Chun*, WANG Zhi*

Key Laboratory of Bioinorganic Chemistry of Hebei Province, College of Science, Agricultural University of Hebei, Baoding 071001, China

Abstract As a novel nanomaterial, carbon nanotubes (CNTs) have been extensively applied in many fields such as material catalysis, adsorption and separation, etc. The applications of CNTs in separation science such as in solid phase extraction, SPME, solid phase microextraction and membrane extraction, and as stationary phase for chromatographic separation and capillary electrophoresis are reviewed in the paper.

Key words: carbon nanotubes, CNTs, separation analysis, review
1 CNTs & SPE

2001 Long Cai Wang \cite{12A} MWCNTs \\
CNTs π-π 4-
MWCNTs 5 mL 10% A 4-
HPLC 0.2 ~ 200 mg/L 0.018 ~ 0.083 mg/L 89.8% ~ 104.2%
MWCNTs Cis XAD-2 4-
MWCNTs C18 4-
MWCNTs 3 XAD-2 CNTs 3
MWCNTs \cite{140} CNTs \cite{145} CNTs \cite{146}

\[\text{MWCNTs} \quad \text{SPE} \quad \text{A} \quad \text{HPLC} \quad \text{0.2 ~ 200 mg/L} \quad \text{0.018 ~ 0.083 mg/L} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{C}_{18} \quad \text{XAD-2} \quad \text{4-
MWCNTs} \quad \text{C}_{18} \quad \text{4-
MWCNTs} \quad \text{A} \quad \text{MWCNTs} \quad \text{C}_{18} \quad \text{3 XAD-2} \quad \text{CNTs} \quad \text{3
MWCNTs} \quad \text{CNTs} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{SPE} \quad \text{A} \quad \text{HPLC} \quad \text{0.2 ~ 200 mg/L} \quad \text{0.018 ~ 0.083 mg/L} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{C}_{18} \quad \text{XAD-2} \quad \text{4-
MWCNTs} \quad \text{C}_{18} \quad \text{4-
MWCNTs} \quad \text{A} \quad \text{MWCNTs} \quad \text{C}_{18} \quad \text{3 XAD-2} \quad \text{CNTs} \quad \text{3
MWCNTs} \quad \text{CNTs} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{SPE} \quad \text{A} \quad \text{HPLC} \quad \text{0.2 ~ 200 mg/L} \quad \text{0.018 ~ 0.083 mg/L} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{C}_{18} \quad \text{XAD-2} \quad \text{4-
MWCNTs} \quad \text{C}_{18} \quad \text{4-
MWCNTs} \quad \text{A} \quad \text{MWCNTs} \quad \text{C}_{18} \quad \text{3 XAD-2} \quad \text{CNTs} \quad \text{3
MWCNTs} \quad \text{CNTs} \quad \text{89.8% ~ 104.2%} \]

\[\text{MWCNTs} \quad \text{SPE} \quad \text{A} \quad \text{HPLC} \quad \text{0.2 ~ 200 mg/L} \quad \text{0.018 ~ 0.083 mg/L} \quad \text{89.8% ~ 104.2%} \]
色谱 第卷

键相互作用,药物的羧基基团则通过氢键和羧基化的端的羧基结合,因此,萃取的选择性和富集倍数大大提高。该方法的为,检出限低至,样品加标回收率高达。

等建立了以羧基化作为吸附剂在线提取蛋清中的溶菌酶的新方法。经氧化和提纯后装入柱,通过流动注射系统实现对蛋清中溶菌酶的在线选择性萃取,以碳酸盐缓冲溶液定量洗脱,进样量为时,富集倍率为,吸附率和洗脱率均为。实验结果表明,该方法所用试剂量少,提取速度快,且得到的溶菌酶纯度较高。

等系统考察了不同直径、不同长度及用不同氧化剂(硝酸、过氧化氢和过硫酸铵)氧化的的吸附能力,并建立了法测定环境水样中阿特拉津、残杀威和杀扑磷的方法。结果表明:短而粗(长度:;直径:)的对于目标分析物尤其是杀扑磷的富集效率比长的高,且回收率是长的两倍;用硝酸氧化的的吸附能力大大提高,而用过氧化氢和过硫酸铵氧化的吸附能力基本不变,但农药的回收率降低。

对进行衍生后萃取水样中的镉、锰和镍离子,然后再用电感耦合等离子体原子发射光谱法测定,结果令人满意。此外,从的结构可以看出,其具有极性键和高的纵横比(长度和直径的比值),因此不易溶于水,且极易自发聚集。的易聚集性和高度的柔软性使得其更易紧密堆积成束状,这就大大降低了它的实际比表面积,也不利于的纯化和表征。但是通过加入一些化学修饰剂如表面活性剂等可以改善的溶解度。现在,美国科学家的一项研究发现在溶液中加入十二烷基苯磺酸钠可以有效地使分散在水中,这个发现促进了的应用。等将阳离子表面活性剂涂覆在羧基化后的上,使其通过疏水作用和离子化作用形成半胶束或类胶束,聚集在表面,从而得到一种新的吸附剂,即半胶束,并首次将其作为吸附剂和原子荧光法联用测定了环境水样中的砷。此外,作为微的吸附剂。和一样,其萃取过程包括分析物的吸附和解吸,但它比使用的有机溶剂少,富集效率高。等用多孔的聚丙烯膜包裹的作为的吸附剂和联用测定了环境水样中的有机磷农药。他们将填装在聚丙烯膜中,将膜两端热封以保护,使杂质大分子不能进入膜内,因此不需要其他的净化过程,并指出与中空纤维保护的及顶空相比,是一种更加快速、准确、高效的样品预处理方法。最近,等对比了、以及自组装作为探针涂层对硝基苯酚、等二氯苯胺和萘的吸附能力,并解释了其吸附机理。作为萃取材料,不仅可以用于柱中,还可用于其他萃取模式。D459等用纸作为分散的吸附剂以除去萃取液中的杂质,结果表明其净化效果与相当。

的易聚集性和高度的柔软性使得其更易紧密堆积成束状,这就大大降低了它的实际比表面积,也不利于的纯化和表征。但是通过加入一些化学修饰剂如表面活性剂等可以改善的溶解度。现在,美国科学家的一项研究发现在溶液中加入十二烷基苯磺酸钠可以有效地使分散在水中,这个发现促进了的应用。等将阳离子表面活性剂涂覆在羧基化后的上,使其通过疏水作用和离子化作用形成半胶束或类胶束,聚集在表面,从而得到一种新的吸附剂,即半胶束,并首次将其作为吸附剂和原子荧光法联用测定了环境水样中的砷。此外,作为微的吸附剂。和一样,其萃取过程包括分析物的吸附和解吸,但它比使用的有机溶剂少,富集效率高。等用多孔的聚丙烯膜包裹的作为的吸附剂和联用测定了环境水样中的有机磷农药。他们将填装在聚丙烯膜中,将膜两端热封以保护,使杂质大分子不能进入膜内,因此不需要其他的净化过程,并指出与中空纤维保护的及顶空相比,是一种更加快速、准确、高效的样品预处理方法。最近,等对比了、以及自组装作为探针涂层对硝基苯酚、等二氯苯胺和萘的吸附能力,并解释了其吸附机理。作为萃取材料,不仅可以用于柱中,还可用于其他萃取模式。
Table 1 Applications of carbon nanotubes as adsorbents in solid-phase microextraction

<table>
<thead>
<tr>
<th>CNTs</th>
<th>Extraction technique</th>
<th>Sample</th>
<th>Analyte</th>
<th>Combined technique</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>bisphenol A, 4-n-nonylphenol, A-tert-octylphenol</td>
<td>HPLC-FD</td>
<td>[13]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>phthalate esters</td>
<td>HPLC</td>
<td>[14]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>OL-SPE</td>
<td>eggs</td>
<td>sulfonamides</td>
<td>HPLC-UV</td>
<td>[15]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>pork</td>
<td>benzodiaepine residues</td>
<td>GC-MS</td>
<td>[16]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>pork</td>
<td>barbiturates</td>
<td>GC-MS/MS</td>
<td>[17]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>fruit juices</td>
<td>organophosphorus pesticides</td>
<td>GC-NPD</td>
<td>[18]</td>
</tr>
<tr>
<td>CNTs</td>
<td>SPE</td>
<td>water</td>
<td>phenolic compounds</td>
<td>UV</td>
<td>[19]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>atrazine, simazine</td>
<td>HPLC-DAD</td>
<td>[20]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>atrazine, propoxur, methidathion</td>
<td>HPLC</td>
<td>[21]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>sulfonyleurea herbicides</td>
<td>HPLC-DAD</td>
<td>[22]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>DDT and its metabolites</td>
<td>HPLC-UV</td>
<td>[23]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>chlorobenzene</td>
<td>GC-MS</td>
<td>[24]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>tetracycline</td>
<td>CE</td>
<td>[25]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>polycyclic aromatic hydrocarbons</td>
<td>GC-MS</td>
<td>[26]</td>
</tr>
<tr>
<td>c-SWCNTs</td>
<td>SPE</td>
<td>urine</td>
<td>non-steroidal anti-inflammatory drugs</td>
<td>CE-MS</td>
<td>[30]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>OL-SPE</td>
<td>egg-white</td>
<td>lysozyme</td>
<td>UV</td>
<td>[31]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>atrazine, propoxur</td>
<td>HPLC</td>
<td>[32]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>Ca, Mg, Ni</td>
<td>ICP-AES</td>
<td>[33]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>arsenic</td>
<td>APS</td>
<td>[35]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>α-SPE</td>
<td>sewage sludge</td>
<td>organophosphorus pesticides</td>
<td>GC-MS</td>
<td>[36]</td>
</tr>
<tr>
<td>CNTs</td>
<td>α-SPE</td>
<td>water</td>
<td>2-nitrophenol, naphthalene, 2,4-dichloroaniline</td>
<td>HPLC-UV</td>
<td>[37]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>DSPE</td>
<td>soil</td>
<td>sulfonyleurea herbicides</td>
<td>HPLC-DAD</td>
<td>[39]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>MWCNTs</td>
<td>water</td>
<td>cephalosporins antibiotics, sulfonamides, phenolic compounds</td>
<td>HPLC</td>
<td>[40]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>chlorophenols</td>
<td>HPLC</td>
<td>[41]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>food contact materials</td>
<td>bisphenol diglycidyl ethers</td>
<td>HPLC-MS/MS</td>
<td>[42]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>atrazine and its metabolites</td>
<td>GC-MS</td>
<td>[43]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>polycyclic aromatic hydrocarbons</td>
<td>HPLC-UV</td>
<td>[44]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>propoxur, atrazine</td>
<td>HPLC</td>
<td>[45]</td>
</tr>
<tr>
<td>c-MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>linear alkylbenzene sulfonates</td>
<td>HPLC-UV</td>
<td>[46]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>carbofuran, prometryn, fenitrothion</td>
<td>GC-MS</td>
<td>[47]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>virgin olive oils</td>
<td>chlorotoluron, diuron, simazine</td>
<td>GC-MS</td>
<td>[48]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>diazinon</td>
<td>HPLC-UV</td>
<td>[49]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>fungicides, prometryn</td>
<td>HPLC</td>
<td>[50]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>fenpropatrin, cyhalothrin, deltamethrin</td>
<td>HPLC</td>
<td>[51]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>organochlorine pesticides, polychlorinated biphenyls</td>
<td>GC-ECD</td>
<td>[52]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>milk</td>
<td>tetracycline</td>
<td>HPLC</td>
<td>[53]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>organochlorine pesticides</td>
<td>GC-ECD</td>
<td>[54]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>organophosphorus pesticides</td>
<td>GC</td>
<td>[55]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>heavy metal ions</td>
<td>FAAS</td>
<td>[56]</td>
</tr>
<tr>
<td>Oxidized SWCNTs</td>
<td>SPE</td>
<td>water</td>
<td>Cu, Co, Pb</td>
<td>ICP-MS</td>
<td>[57]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>SPME</td>
<td>water</td>
<td>polybrominated diphenyl ethers</td>
<td>GC-ECD</td>
<td>[58]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>SPME</td>
<td>human urine</td>
<td>methyl tert-butyl ether, ethyl tert-butyl ether, methyl tert-amyl ether</td>
<td>GC-MS</td>
<td>[59]</td>
</tr>
<tr>
<td>c-MWCNTs</td>
<td>IT-SPME</td>
<td>water</td>
<td>substituted aniline compounds</td>
<td>HPLC-UV</td>
<td>[60]</td>
</tr>
<tr>
<td>CNTs</td>
<td>HS-SPME</td>
<td>soil</td>
<td>organochlorine pesticides</td>
<td>GC-ECD</td>
<td>[61]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>SPME</td>
<td>water</td>
<td>phenols</td>
<td>GC-FID</td>
<td>[62]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>SPME</td>
<td>water</td>
<td>phenols</td>
<td>HPLC-UV</td>
<td>[63]</td>
</tr>
</tbody>
</table>
悬浮液。将一定量的上述悬浮液沉积在经过预处理的石英纤维上，于下加热以除去溶剂，重复此过程至得到实验所需的涂层厚度。和商业化的纤维相比，涂层的萃取效率更高，富集倍数(%)也比活性炭(3%)、聚二苯二甲基硅氧烷(4%))和聚二甲苯，(5%)涂层高，此方法在实际样品(河水、废水及牛奶)的多溴联苯醚测定中取得了满意的结果。

用3%&'()作为34$5的吸附剂和6&,3联用，建立了测定人体尿样中的甲基叔丁醚、乙基叔丁醚和甲基叔戊基醚的新方法，检出限为7! " #,和&.189:;7 " 4<$3纤维相比，3%&'的热稳定性更强(高达#- #* #),使用寿命更长(可重复使用$(#)次)。另外，羧基化的%&'()还可作为管内34$5的吸附剂，并成功用于测定环境水样中的取代苯胺。

将羧基化的%&'()涂在熔融石英管的外壁后，插入到直接固定在六通阀上代替进样环的聚醚醚酮管中，即可实现取代苯胺的在线测定，大大提高了其萃取效率，降低了方法的检出限(#!- #* #- $)。

田孟魁等\[%$\]采用&'()顶空34$5,6&法测定了土壤中有机氯农药的残留，该方法的线性范围为#- (& (#$#7! " !，检出限为#- #) & #-))7! " !；样品的加标回收率为"$=*=& $!#=#+& $!#=#。

作为34$5吸附剂的其他应用实例见表$。随着研究的深入，&'()作为34$5吸附剂的应用将会越来越广泛。

作为色谱固定相的应用

良好的吸附性能、热稳定性和化学稳定性，使其在6&和液相色谱(6&)中作为新的固定相的应用引起了人们的极大关注。另外，&'()易于功能化，其亲和性和选择性也扩大了其分离有机物的范围。

B.1/)9>.等\[%\]首次讨论了&'()的吸附性能，为其作为色谱分离中的固定相奠定了基础，同时指出&'()的水不溶性限制了其在色谱方面的应用。

#2等\['\]首次报道了$%&'()的色谱性质，比较了活性炭、石墨化炭黑和$%&'()作为6&固定相测定芳香族化合物、烷烃类、卤代烃等的分离效果，结果表明$%&'()是一种性能优异的6&固定相，和活性炭、石墨化炭黑相比，$%&'()表面均匀，极性基团较少，加快了极性化合物在分离过程中的吸附，因此易得到更好的对称峰形，而其对疏水性物质的保留能力较强，从而使色谱分离更为容易。

与$%&'()相比，更小的直径以及其特殊的电性质，增强了其与分子之间的相互作用，此时，管壁上的&.1键由原来的!"!杂化转变成了类!"!杂化，因此更有利于6&分离。

B.1C.等\['$\]用化学气相沉积法将自组装的$%&'()涂覆在熔融毛细管柱上制得开管气相色谱柱，用于分离一系列的有机化合物(戊烷、二氯甲烷、甲苯、邻二甲苯等)，结果表明与石墨化炭黑相比，这种非极性的新型固定相与有机蒸汽间的相互作用力更强，分离效果更好，同时其比表面积大，热稳定性强，扩大了传统的6&分离的应用范围。

$%&'()也可用于制备可进行快速程序升温的微型气相色谱柱，3/.D;1，E.77等\[!'\]用这种柱快速分离了烷烃和不同的有机化合物的混合物(甲醇、\!，\!戊酮、苯甲醚和癸烷)，分离效果令人满意。
Often using hydrogen and carbon sources, in addition to special catalysts for catalytic chemical vapor deposition (CVD), it is necessary to have a special additive for the catalytic process. This additive is based on its unique one-dimensional tubular structure and can be obtained by self-assembly on the surface of the capillary. During the process, two different gas flows are required for reduction and separation. This catalyst can be used directly in the ion liquid phase by chemical treatment of the surface, which improves separation. The catalyst is used in the separation of aromatic compounds. The ion liquid phase, or aromatic hydrocarbons, can be used as a stationary phase for the analysis of lipids.

<table>
<thead>
<tr>
<th>CNTs</th>
<th>Separation technique</th>
<th>Column characteristic</th>
<th>Analyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWCNTs</td>
<td>GC</td>
<td>30 cm length x 0.30 cm packed glass column</td>
<td>aromatic hydrocarbons, alkenes, alcohols, ketones</td>
<td>70[1]</td>
</tr>
<tr>
<td>Self-assembled SWCNTs</td>
<td>GC</td>
<td>stainless steel tube</td>
<td>alkanes, PAHs</td>
<td>71[1]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>ultrafast GC</td>
<td>50 cm long microfabricated column</td>
<td>alkanes, methanol, 2-pentanone, anisole, decane</td>
<td>72[1]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>GC</td>
<td>stainless steel tube</td>
<td>alkane, alkene</td>
<td>73[1]</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>μ-HPLC</td>
<td>40 cm fused silica capillary monolithic stationary phase</td>
<td>uracil, phenol, toluene</td>
<td>75[1]</td>
</tr>
<tr>
<td>Self-assembled CNTs</td>
<td>GC</td>
<td>silica-lined and plain stainless steel tubes</td>
<td>volatile organics</td>
<td>77[1]</td>
</tr>
<tr>
<td>Self-assembled SWCNTs</td>
<td>GC</td>
<td>long silica-lined steel capillary tube</td>
<td>benzene, toluene, ethylbenzene, o-xylene</td>
<td>78[1]</td>
</tr>
<tr>
<td>CNTs</td>
<td>micro-GC chip</td>
<td>a 30 cm[3] length microfabricated channel</td>
<td>alkanes</td>
<td>79[1]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>GC</td>
<td>50 cm x 0.30 cm packed glass column</td>
<td>volatile organics</td>
<td>80[1]</td>
</tr>
<tr>
<td>IL-CNTs</td>
<td>GC</td>
<td>packed silica capillary column</td>
<td>aromatic hydrocarbons</td>
<td>81[1]</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>GC</td>
<td>packed column</td>
<td>alkanes, aromatic compounds</td>
<td>82[1]</td>
</tr>
</tbody>
</table>

2 CNTs as GC LC

Table 2 Applications of CNTs as stationary phase in GC and LC
我们相信将手性引入分子领域存在巨大潜力。虽然目前尚无手性电泳载体用于对映体的分离，但是它在分析其他非手性物质时同样具有重要应用。例如，烷基苯磺酸钠和氯仿溶液之间的相溶作用位点，有利于电泳分离。另外，含有羧基化的表面活性剂涂层的毛细管可以作为假固定相，用于电泳，改善了色氨酸的对映体的分离效果，而且在小于其阈浓度时，羧基化的表面活性剂能够作为毛细管区带电泳的长尾端在涂层的表层包裹固定相，成功地分离了色氨酸的对映体。毛细管柱长为32 mm，柱径为70 s”，分析时基线更稳定；和用表面活性剂涂层的的假固定相可以作为毛细管区带电泳的固定相方面的研究才刚刚开始，尚需进一步研究。
6384
75] Li Y[, Chen Y[, and Xiang R[et al. Anal Chem 2005 77 1398
79] Reid V[, Stademman M[, Bakajin O[, et al. Talanta 2009 77 1420
80] Li Q[, L[, Yuan D[, X[, and Lin Q[,] M. J Chromatogr A 2004 1026 283
81] Ren C[, AI P[, and Yuan L[,] M. Chinese Journal of Analysis Laboratory 2008 27 7 23
82] Speltini A[, Merli D[, and Quartarone E[,] et al. J Chromatogr A 2010 1217 2918
83] Na N[, Hu Y[, and Ouyang J[,] et al. Talanta 2006 69 866
85] Xiong X[, Ouyang J[, and Baeyens W[,] R[, G[,] et al. Electrophoresis 2006 27 3243
87] Moliner-Martínez Y[, Cárdenas S[, and Valcárcel M. Electrophoresis 2007 28 2573
88] Xu Y[, and Li S[,] F[]. Electrolytes 2006 25 4025
90] Carrillo-Carrion C[, Lucena R[, Cárdenas S[,] et al. J Chromatogr A 2007 1171 1