Determination of perfluorinated compounds in human urine by ultra high performance liquid chromatography-tandem mass spectrometry

GUO Feifei1,2 WANG Yuxin2 LI Jingguang2*
ZHANG Jialing1,2 ZHAO Yunfeng2 WU Yongning2

1. School of Public Health, Shanxi Medical University, Taiyuan 030001, China
2. Key Laboratory of Chemical Safety and Health, National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China

Abstract A method for the analysis of 12 perfluorinated compounds (PFCs) in human urine by ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated. One mL 2% formic acid in methanol was added into the urine. After ultrasonication and centrifugation, the samples were purified by a solid phase extraction column and examined by UPLC-MS/MS. The target compounds were quantified by stable isotope dilution technique. The linear range was 0.05 – 50 μg/L for the 12 PFCs and the correlation coefficient ≥ 0.992. The detection level of 12 PFCs were in the range of 0.44 – 3.47 ng/L. The matrix recoveries of the method for the 12 PFCs in three spiked levels 20, 100, 500 ng/L ranged from 80.3% to 116.2%. The relative standard deviations (RSDs) n = 5 were between 5.5% and 13.8%. The sensitive and accurate method was successfully applied to the analysis of PFCs in human urine.

Key words ultra high performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS, perfluorinated compounds, urine
并参考人体和环境基质的分析方法，本研究采用固相萃取法（PSA）和固相微萃取（SPME）技术来提取和净化尿液中的目标化合物。根据尿液基质特点，优化提取条件，建立了人尿液中 spiked 溶液为全氟己酸的超高效液相色谱-串联质谱（UPLC-MS/MS）测定方法。根据尿液基质特点，优化提取条件，建立了人尿液中 spiked 溶液为全氟己酸的超高效液相色谱-串联质谱（UPLC-MS/MS）测定方法。

1.3 实验条件

<table>
<thead>
<tr>
<th>化合物</th>
<th>质谱模式</th>
<th>离子源</th>
<th>质荷比范围</th>
<th>电喷雾电压</th>
<th>干扰离子</th>
<th>杂质离子</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFHxS</td>
<td>产品离子</td>
<td>ESI-</td>
<td>M+</td>
<td>-90 V</td>
<td>60 80</td>
<td>70 80</td>
</tr>
<tr>
<td>PFOS</td>
<td>产品离子</td>
<td>ESI-</td>
<td>M+</td>
<td>-90 V</td>
<td>90 100</td>
<td>100 110</td>
</tr>
<tr>
<td>PFOA</td>
<td>产品离子</td>
<td>ESI-</td>
<td>M+</td>
<td>-90 V</td>
<td>90 100</td>
<td>100 110</td>
</tr>
<tr>
<td>PFDS</td>
<td>产品离子</td>
<td>ESI-</td>
<td>M+</td>
<td>-90 V</td>
<td>90 100</td>
<td>100 110</td>
</tr>
</tbody>
</table>

Table 1 MS parameters of target compounds and internal standards

<table>
<thead>
<tr>
<th>化合物</th>
<th>质量转移比</th>
<th>锥电压</th>
<th>冲击能量</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFHxS</td>
<td>399–80</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>PFOS</td>
<td>499–80</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>PFOA</td>
<td>499–99</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>PFDS</td>
<td>599–80</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>PFHxA</td>
<td>503–80</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>PFHxS®</td>
<td>315–270</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>PFODa</td>
<td>463–419</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>PFNA</td>
<td>468–423</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>PFDA</td>
<td>515–470</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>PFUda</td>
<td>563–519</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>MPFDoa</td>
<td>613–569</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

1.4 样品制备

样品收集包括血液、血清、母乳和其他生物材料。血液样本来自非职业暴露人群。尿液样本购自浙江湖州英美生物科技有限公司。纯度高于 80% 的超纯水用于制备 spiked 溶液。人工合成尿液购自浙江湖州英美生物科技有限公司。样品处理在冷冻高离心机中进行。样品以 10% 甲酸水溶液、人工合成尿液和甲酸水溶液为流动相，以乙酸为脱溶剂，流速为 1.0 mL/min，柱温设定为 50 °C。检测模式：多反应监测；离子源：电喷雾离子源（ESI-）；质谱参数见表 1。
色谱第卷

样品前处理

取尿液样品于聚丙烯离心管中，加入定量内标溶液，甲酸甲醇溶液，超声后在下以离心，收集的上清液用固相萃取柱净化。先用氨水甲醇、甲醇、水活化柱，上样后分别用甲酸水溶液和甲酸水溶液甲醇，淋洗，真空抽干柱后再用甲醇进行第二次淋洗，最后用氨水甲醇洗脱目标化合物，洗脱液经水浴氮气吹干后用甲醇水溶液定容为，用尼龙过滤膜除去杂质后进行分析。

结果与讨论

空白基质的选择

采用小鼠尿液进行实验，发现其存在较高的本底，因此不能用作本实验的空白基质。人工合成尿液中不存在本底污染，同时不含蛋白质，而由于可与蛋白质结合，使用不含蛋白质的人工尿液无法准确评价方法的提取净化能力。因此本实验通过对不同人的尿液筛选，在样本中筛选出无本底的人体尿液作为本实验的空白基质。

前处理条件的选择

目前血液样品常用的前处理方法是离子对萃取法，而本实验中采用离子对萃取法处理尿液时，因尿液的取样量大，浓缩过程繁琐耗时，因此参考文献对母乳和水样的处理方法，采用作为尿液的提取与富集方法。

提取液优化

分别用甲酸水、纯乙腈、甲酸乙腈、纯甲醇、甲酸甲醇、%019/38甲醇溶液作为尿液样品的提取液，比较不同提取溶液对目标物的提取效率。在本实验室以前建立的母乳提取方法中使用得到了很好的提取效果。但同样以甲酸水作为提取液处理尿液时，目标物的保留时间会发生明显的变化，并且内标的回收率较低，用其提取的尿液基质中05;的响应明显低于标准溶液且05;的保留时间缩短了约%019/38。因此甲酸水不适于提取尿液中的0536。其余种提取液的基质加标（加标质量浓度为%019/38）回收试验结果见图，从中可看出甲酸甲醇溶液提取效率较好，目标物的回收率的范围为%019/38-%019/38，而且不同目标物之间无明显差异。
2.3

6 2 μg/L
50% 200 μL 100 μg/L > 1
< 1

2 μg/L

2.4

4 Y X

0.05 ~ 50 μg/L

0.992

RSD n = 6
5.5% ~ 13.8%

2.5

LOD 5 LOQ

3

10

LOD 12 LOD

LOD 2

2.6

80%

20 100 500 ng/L

1.4 7.1

9 PFCAs 3 PFSAs

RSD 3

2.7

PFCs

n = 5

Table 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>Background ng/L</th>
<th>20 ng/L</th>
<th>100 ng/L</th>
<th>500 ng/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recovery/%</td>
<td>RSD/%</td>
<td>Recovery/%</td>
<td>RSD/%</td>
</tr>
<tr>
<td>PFHxA</td>
<td>< LOD</td>
<td>93.6</td>
<td>114.5</td>
<td>9.4</td>
</tr>
<tr>
<td>PFHpA</td>
<td>< LOD</td>
<td>116.2</td>
<td>111.5</td>
<td>9.3</td>
</tr>
<tr>
<td>PFOA</td>
<td>3.82</td>
<td>89.7</td>
<td>97.3</td>
<td>7.1</td>
</tr>
<tr>
<td>PFNA</td>
<td>< LOD</td>
<td>95.9</td>
<td>91.4</td>
<td>6.5</td>
</tr>
<tr>
<td>PFDA</td>
<td>1.28</td>
<td>94.6</td>
<td>89.0</td>
<td>6.1</td>
</tr>
<tr>
<td>PFUdA</td>
<td>2.33</td>
<td>103.1</td>
<td>111.5</td>
<td>7.4</td>
</tr>
<tr>
<td>PFDoA</td>
<td>< LOD</td>
<td>95.6</td>
<td>91.3</td>
<td>5.5</td>
</tr>
<tr>
<td>PPTdA</td>
<td>< LOD</td>
<td>92.7</td>
<td>88.6</td>
<td>12.1</td>
</tr>
<tr>
<td>PPTeD</td>
<td>< LOD</td>
<td>88.9</td>
<td>84.2</td>
<td>13.8</td>
</tr>
<tr>
<td>PFHxS</td>
<td>< LOD</td>
<td>90.3</td>
<td>112.8</td>
<td>9.7</td>
</tr>
<tr>
<td>PFOS</td>
<td>< LOQ</td>
<td>85.2</td>
<td>83.7</td>
<td>7.6</td>
</tr>
<tr>
<td>PFDS</td>
<td>< LOD</td>
<td>97.0</td>
<td>106.3</td>
<td>10.2</td>
</tr>
</tbody>
</table>

2.4

Y X

4 6

100% 3

7.4 ~ 47.3 ng/L

PFOA PFNA

PFDA

PFOA PFOS

PFCs

3

4

Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>PFOA</th>
<th>PFNA</th>
<th>PFDA</th>
<th>PFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>4.4</td>
<td>< LOD</td>
<td>< LOD</td>
<td>7.4</td>
</tr>
<tr>
<td>S2</td>
<td>14.7</td>
<td>1.9</td>
<td>1.73</td>
<td>24.6</td>
</tr>
<tr>
<td>S3</td>
<td>7.9</td>
<td>1.6</td>
<td>< LOD</td>
<td>14.6</td>
</tr>
<tr>
<td>S4</td>
<td>17.0</td>
<td>2.8</td>
<td>2.5</td>
<td>28.7</td>
</tr>
<tr>
<td>S5</td>
<td>6.9</td>
<td>< LOD</td>
<td>< LOD</td>
<td>8.5</td>
</tr>
<tr>
<td>S6</td>
<td>15</td>
<td>< LOD</td>
<td>3.1</td>
<td>47.3</td>
</tr>
</tbody>
</table>
图3 MRM色谱图，显示尿液中检测到的PFCs

引文：