Determination of streptomycin and dihydrostreptomycin residues in tomato paste by tandem dual solid phase extraction column-liquid chromatography-tandem mass spectrometry

GONG Zhiguo¹ SU Min¹ JI Xincheng¹ LI Shiyu¹ WAN Yaping²

¹ 1. Technicale Center of Xinjiang Entry-Exit Inspection and Quarantine Bureau, Urumqi, 830063, China
² 2. Beijing Wangner Biotechnology Co. Ltd, Beijing, 102206, China

Abstract: The method was specifically developed for the simultaneous determination of streptomycin and dihydrostreptomycin residues in tomato paste by tandem dual solid phase extraction (SPE) column cleanup-liquid chromatography-tandem mass spectrometry. The residues were extracted from the samples with phosphate buffer solution pH 4.0. The cleanup was performed by the way of dispersive solid phase extraction and tandem dual solid phase extraction column. The polar chromatographic column was used to complete the separation of the analytes under gradient elution and the analytes were detected in multiple reaction monitoring (MRM) mode via positive electrospray ionization (ESI+) mode. The external standard calibration curves were used for the quantification. The linear ranges were from 0.01 to 0.2 mg/L with a good linear relationship r > 0.999 for streptomycin and dihydrostreptomycin. The limit of quantification (LOQ) was 0.02 mg/kg for the both analytes. The recovery range was from 71% to 101% with the relative standard deviations (RSDs) between 2.3% and 15%. It was indicated that this method is accurate, easier, more sensitive and has a better purification effect in the monitoring and analysis. The method is accurate and specific to monitor and analyze of streptomycin and dihydrostreptomycin residues in tomato paste and its products.

Key words: tandem dual solid phase extraction column cleanup, liquid chromatography-tandem mass spectrometry (LC-MS/MS), streptomycin, dihydrostreptomycin, tomato paste
链霉素和双氢链霉素属于氨基糖苷类抗生素中的常用药物，是从放线菌属的灰链丝菌的培养液中提取出来的，能够有效地抑制肽链的延长和细菌蛋白质的合成，消灭革兰氏阴性好氧菌及部分革兰氏阳性菌。对多种植物细菌和真菌性病害，特别是对细菌性病害均有良好的防治效果，如可以有效地防治西红柿青枯病、西红柿溃疡病、大白菜软腐病和黄瓜细菌性角斑病等。但该抗生素对人有一定的（有时甚至是严重的）毒副作用，食品中残留过量的链霉素会对人体造成严重危害，如损伤前庭神经和耳蜗神经导致听力减退。链霉素还具有潜在的致畸、致突变和致癌作用。

日本肯定列表对于番茄中链霉素和双氢链霉素总量的限量为，美国对于番茄中链霉素的限量是

目前，我国是世界第一大番茄制品出口国，番茄制品是我国重要的农产品出口品种之一。经调查，我国多数地区在农业生产中都使用上述抗生素，这就极大地增加了我国番茄制品的出口风险。番茄制品中链霉素和双氢链霉素残留量检测方法的建立对提高我国番茄制品检测技术水平，促进我国农产品对外出口，打破国际贸易壁垒等方面具有重要意义。该方法的建立还将为其他农产品的食品安全检测提供重要的技术参考和依据。

目前，国内外针对链霉素和双氢链霉素残留的检测技术已有大量的研究，常用的检测方法有酶联免疫法、分光光度法、液相色谱法和液相色谱-串联质谱法等。酶联免疫法易产生假阳性或假阴性结果，常用于筛查分析；液相色谱法不能有效分离链霉素和双氢链霉素，且灵敏度较低，不能实现链霉素和双氢链霉素的同时测定和确证分析，因而难以解决其混合残留的问题；液相色谱-串联质谱法是目前应用广泛的检测方法，但文献报道的相关方法中样品前处理比较复杂，常需要经过两次固相萃取小柱的净化，试剂消耗量大，并且需要采用离子对试剂，易污染质谱检测器，使质谱的重现性和灵敏度变差。目前，采用同时检测番茄酱中链霉素与双氢链霉素残留量的方法还未见报道。番茄酱中番茄红色素含量较高，且还含有矿物质、碳水化合物、氨基酸、核黄素和烟酸等物质。上述物质对于链霉素和双氢链霉素的测定影响很大，净化条件不佳时，待测物的峰形很差，灵敏度较低。净化处理是链霉素和双氢链霉素测定的难点。本文采用分散固相萃取初净化和串联双柱固相萃取净化相结合的样品前处理技术，建立了番茄酱中链霉素和双氢链霉素残留量的检测方法。该方法试剂用量少，无需使用离子对试剂；方法的定量限均为，完全能满足日本肯定列表和美国对于番茄中链霉素和双氢链霉素的限量标准要求。

实验部分
仪器、试剂与材料
- 液相色谱仪（美国Agilent公司）
- 质谱仪，配有电喷雾离子源（美国AB SCIEX公司）
- 高纯水发生器（美国密理博公司）
- 固相萃取装置（美国Agilent公司）
- 氮吹仪（美国A#/B+&'B”公司）
- 链霉素和双氢链霉素标准品（美国C#D ;.#$+”公司）
- 甲醇、乙腈（色谱纯，美国F*!.$#公司）
- 甲酸铵、乙酸铵、磷酸二氢钾、乙二胺四乙酸钠、甲酸和盐酸等均为优级纯试剂
- 实验用水为二次净化水
- 反相固相萃取柱（美国7/*8$+”公司）和弱阳离子交换柱（美国7/*8$+”公司）
- 固相萃取柱转接头（美国7/*8$+”公司）
- 硅藻土（分析纯，上海化学试剂厂）
- 有机系滤膜（美国&% ·）

番茄酱样品为当地企业生产。

溶液的配制
- 标准溶液
 - 准确称取适量的链霉素和双氢链霉素标准品，分别用含甲酸的水溶液配成的储备液，储存于冰箱中，保存期12个月。根据实验需要，用含甲酸的水溶液稀释标准储备液，配成适当浓度的标准工作溶液。
- 样品提取液
 - 称取的JK% @A溶解于水中，用调节为（,加入>B% C7，充分溶解，用水定容到。

液相色谱条件
- 色谱柱：
- 柱温：
- 进样体积：
- 流动相7：甲酸铵水溶液（含甲酸），流动相9：乙腈溶液（含甲酸）。
- 梯度洗脱：
- 流速：。

质谱条件
- 离子源：
- 扫描方式：正离子扫描
- 检测方式：多反应监测
- 电喷雾电压：
- 离子源温度：
- 聚焦电压：
- 去簇电压：
- 进口电压：。
- 其他质谱参数见表。

1.2
1.2.1
- 0.3% 100 mg/L
- 4 ℃ 18
- 0.3% 100 mg/L

1.2.2
- 1.36 g Kh2PO4 水 950 mL
- 1 mol/L HCl pH 4
- 0.15 g Na2EDTA
- 2H2O
- 1000 mL

1.3
- ACQUITY UPLC BEH HILIC 100 mm × 2.1 mm 1.7 μm
- 40 ℃ 10 μL
- 10 μL
- A 5 mmol/L
- 0.2% B
- 0 min 25% A 0 0.5 min 25% A ~ 60% A 5 5.5 min 60% A 5.5 6 min 60% A ~ 25% A 6 ~ 9 min 25% A
- 32 mL/min

1.4
- ESI
- MRM
- [5000 V]
- 550 ℃
- 150 V
- 80 V
- 1
Table 1 Mass spectrometry parameters of streptomycin and dihydrostreptomycin

<table>
<thead>
<tr>
<th>AnalYTE</th>
<th>Parent ion m/z</th>
<th>Daughter ion m/z</th>
<th>Dell time/ ms</th>
<th>Collision energy/V</th>
<th>Collision cell exit potential/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomycin</td>
<td>582.1</td>
<td>263.1 100%</td>
<td>150</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>246.1 52%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydrostreptomycin</td>
<td>584.1</td>
<td>263.1 100%</td>
<td>150</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>246.0 36%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Quantitative ion.

1.5.1 Sample Preparation

1.5.1.1 Sample Collection

- 5.0 g sample, 20 mL methanol, 1 min, 30 min, 8000 r/min
- 10 min

1.5.1.2 Sample Extraction

- 7.0 mL water, 0.8 g silicon, 0.1 min, 10 min, 4000 r/min

1.5.1.3 Initial Purification

- 5.0 mL water, 1 mL water, 1.0 mL/min
- 6.0 mL water, 1 mL water, 1 mL/min
- 2 mL water, 2 mL water
- 3.0 min, 6.0 mL water

1.5.1.4 Second Purification

- 0.5 mL water, 50 °C, 0.2% HCl, 70:30 v/v, 1 min, 2 min, 0.2 µm

2.1 Sample Handling

2.1.1 Sample Preparation

- 14H2O sample, 0.1 µm filter, LC-MS/MS

2.2 Analysis Conditions

2.2.1 Chromatography

- HILIC column

2.2.2 Solvent Selection

- 0.2% formic acid in water

2.3 Determination of Concentration

- 5 mmol/L sodium phosphate

2.4 Quality Assurance

- pH 4.0 ± 0.5
再净化的目的是去除一些极性、非极性物质和初净化未去除的色素和酸类物质。本文利用固相萃取柱再净化。固相萃取柱通常有两种使用方式,一种是利用固相萃取柱保留待测物;另一种是利用固相萃取柱保留一些干扰物质。文献中有利用反相柱和离子交换柱分两次净化的报道\cite{1}$\%$,此操作需要离子对试剂,且洗脱试剂的用量大,操作繁琐费时。本文利用反相柱(上部)和离子交换柱(下部)串接起来同时净化样品。考虑到待测物的极性较强,在反相柱中几乎无保留,本文以弱酸性缓冲溶液为提取试剂,待测物在溶液中以离子化方式存在,提取溶液通过反相柱时,一些非极性杂质主要被保留在反相柱中,而待测物无保留地通过反相柱进入离子交换柱中。弱阳离子交换柱主要保留离子化合物,待测物被保留在离子交换柱中,而一些非离子化的物质在离子交换柱中没有保留。为了避免反相柱中有残留的待测物,用提取液再淋洗双柱,淋洗不仅将反相柱中残留的待测物洗脱于离子交换柱中,同时也洗脱了离子交换柱中残留的杂质。用水和甲醇淋洗离子交换柱,除去易溶于水相和有机相的杂质。最后,用酸化的有机相洗脱液洗脱离子交换柱中的待测物供后续处理。双柱串联起来同时净化比用单一柱和分别用双柱净化\cite{2,3,4,5}节省大量溶剂,且操作简单快速,净化效果好,回收率高。表2中给出了4种净化方式处理番茄酱样品在溶剂用量、净化效果(回收率)和净化时间上的简单比较。综合表2的结果可得出,本文处理番茄酱样品所用的净化方法较优。

表2: 三种净化方法的比较

<table>
<thead>
<tr>
<th>Method</th>
<th>Amount of solvent/mL</th>
<th>Recovery/(%)</th>
<th>Time/(\text{min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single SPE</td>
<td>30</td>
<td>20 - 40</td>
<td>40</td>
</tr>
<tr>
<td>Dual SPE</td>
<td>60</td>
<td>60 - 75</td>
<td>120</td>
</tr>
<tr>
<td>Tandem dual SPE</td>
<td>25</td>
<td>71 - 101</td>
<td>45</td>
</tr>
</tbody>
</table>

SPE[] solid phase extraction.

2.5 回收率和精密度

在空白番茄酱样品中添加链霉素和双氢链霉素,每个水平添加5个水平进行回收试验,每个水平重复3次,加标回收率和精密度(相对标准偏差(RSD))结果见表2。

2.6 LOD和LOQ

MRM \[0.02 \text{ mg/kg}\] LOD \[0.01 \text{ mg/kg}\] LOQ \[0.02 \text{ mg/kg}\]

图1 MRM色谱图

![Streptomyacin m/z=582.1/246.1](image1)

![Dihydrostreptomycin m/z=584.1/246.0](image2)
第3期

巩志国, 等: 串联双柱固相萃取液相色谱串联质谱法测定番茄酱中链霉素和双氢链霉素残留量

表

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spiked mg/kg</th>
<th>Recovery/%</th>
<th>RSD/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomycin</td>
<td>0.02</td>
<td>101</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>77</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>76</td>
<td>9.7</td>
</tr>
<tr>
<td>Dihydrostreptomycin</td>
<td>0.02</td>
<td>71</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>92</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>82</td>
<td>11.3</td>
</tr>
</tbody>
</table>

图2 MRH chromatograms of streptomycin and dihydrostreptomycin spiked in blank tomato paste at 0.02 mg/kg

图3

结论

本文采用磷酸盐缓冲溶液提取番茄酱中链霉素和双氢链霉素，分散固相萃取和串联双柱多重净化，净化效果好。采用了双柱串联同时净化的方法，无需使用离子对试剂，避免了离子对试剂污染质谱检测器。本方法不仅可用于番茄酱和番茄制品中链霉素和双氢链霉素残留量的测定，也适用于蔬菜和水果中链霉素和双氢链霉素残留量的测定。本方法的定量限完全能满足国内外对链霉素和双氢链霉素残留量的限量要求。

参考文献:

[6] 食品安农残限量标准

3.2% ~ 15% RSD

71% ~ 92% RSD

2.3% ~ 11.3% RSD

0.02 mg/kg MRM