色谱 ›› 2020, Vol. 38 ›› Issue (9): 1095-1101.DOI: 10.3724/SP.J.1123.2020.02031

• 研究论文 • 上一篇    下一篇

一种二维吖嗪共价有机骨架材料涂层毛细管的制备及其用于开管-毛细管电色谱分离硝基苯酚类环境内分泌干扰物

赵凌艺, 吕文娟(), 牛效莹, 潘聪洁, 陈宏丽, 陈兴国()   

  1. 兰州大学化学化工学院, 功能有机分子化学国家重点实验室, 甘肃 兰州 730000
  • 收稿日期:2020-03-06 出版日期:2020-09-08 发布日期:2020-12-11
  • 通讯作者: 吕文娟,陈兴国
  • 作者简介:陈兴国.Tel:(0931)8912763, E-mail:chenxg@lzu.edu.cn
    吕文娟.Tel:(0931)8912763, E-mail:lvwenj@lzu.edu.cn
  • 基金资助:
    国家自然科学基金(21675068);国家自然科学基金(21705064)

Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography

ZHAO Lingyi, LÜ Wenjuan(), NIU Xiaoying, PAN Congjie, CHEN Hongli, CHEN Xingguo()   

  1. College of Chemistry and Chemical Engineering, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
  • Received:2020-03-06 Online:2020-09-08 Published:2020-12-11
  • Contact: LÜ Wenjuan,CHEN Xingguo
  • Supported by:
    National Natural Science Foundation of China(21675068);National Natural Science Foundation of China(21705064)

摘要:

作为一种新型多孔晶体材料,共价有机骨架材料(COFs)由于具有比表面积大、密度小、稳定性高及孔径可调等特点而在诸多领域中得到了广泛的应用。但将其用作固定相以提高开管-毛细管电色谱(OT-CEC)分离效率的研究报道较少。鉴于此,该文参考文献方法合成了一种二维吖嗪COF(ACOF-1),然后以ACOF-1作为固定相制备了ACOF-1涂层毛细管并以其为分离通道建立了一种分离硝基苯酚类环境内分泌干扰物(EEDs)的OT-CEC新方法。通过X射线粉末衍射、傅里叶变换红外光谱和扫描电子显微镜等表征手段证明成功合成并制备了ACOF-1和ACOF-1涂层毛细管。实验结果表明,在最佳分离条件下,所建立的OT-CEC方法可在20 min内实现2-硝基苯酚、4-硝基苯酚、2,4-二硝基苯酚和2,4,6-三硝基苯酚4种硝基苯酚分析物的基线分离。4种分析物的线性范围分别为10~500 mg/L和20~1000 mg/L,决定系数均大于0.99,检出限和定量限分别为0.13~0.23 mg/L和0.45~0.60 mg/L。迁移时间和峰面积的日内、日间及柱间相对标准偏差均不超过9.4%,表明所建立的方法重现性好,稳定性高,可用于硝基苯酚类EEDs的分离检测。分离机理研究表明ACOF-1孔结构对各分析物的尺寸选择作用是影响分离行为的主要因素。该工作证明了以COFs作为固定相的OT-CEC方法用于分离检测EEDs的可行性,后续将继续围绕COFs涂层毛细管的制备及其用于OT-CEC分离测定EEDs开展研究。

关键词: 开管-毛细管电色谱, 共价有机骨架材料, 环境内分泌干扰物, 硝基苯酚

Abstract:

As a class of new porous crystalline materials, covalent organic frameworks (COFs) are attracting the attention of a large number of scientists. Because of their large specific surface area, low density, high stability, and tunable pore size, COFs have been widely applied in many fields, including analytical chemistry. Open-tubular capillary electrochromatography (OT-CEC) is a mode of capillary electrochromatography. In recent years, a variety of materials such as porous organic frameworks have been used as the stationary phase for OT-CEC to overcome the disadvantages of low phase ratio and column capacity, thereby improving the separation efficiency. However, there are a few reports on the use of COFs as the stationary phase to improve the separation efficiency of OT-CEC. Environmental endocrine disruptors (EEDs) are a large class of exogenous chemicals that can disturb the effect of the normal endocrine substances and adversely affect the endocrine and reproductive systems of human beings. Considering the widespread existence of EEDs and the disadvantages of existing detection methods (e. g., gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry), such as complicated operation and large sample consumption, it is necessary to develop new methods for the separation and determination of EEDs in complex samples. OT-CEC is a good choice in this regard because of its low sample dosage, simple operation, and high analytical speed. Accordingly, a two-dimensional azine-linked covalent organic framework (ACOF-1) with a large surface area and small pore size was synthesized according to the reference method. Then, an ACOF-1-coated capillary was fabricated using ACOF-1 as the stationary phase, via covalent bonding, and used as the separation channel to establish a new OT-CEC method for the separation and detection of nitrophenol EEDs. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) were used to characterize the synthesized ACOF-1 and the ACOF-1-coated capillary. The peak pattern in the XRD spectrum confirmed the successful synthesis of ACOF-1. The absorption peaks in the FT-IR spectrum and the morphology of the inner wall seen in the SEM images also demonstrated that the ACOF-1-coated capillary was fabricated successfully. A series of experiments were carried out to investigate the effects of the organic additive (methanol) content, pH, and concentration of the borate buffer on the resolution, migration time, and peak shape. Based on the results, the optimal separation conditions for the four nitrophenol analytes were 15 mmol/L borate (pH 9.20) with 10% (v/v) methanol. Under the optimum conditions, 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2, 4-dinitrophenol (DNP), and 2, 4, 6-trinitrophenol (TNP) could be baseline separated within 20 min by the established OT-CEC method. The linear range for 2-NP and 4-NP was 10-500 mg/L, while that for DNP and TNP was 20-1000 mg/L. The determination coefficients (R2) were greater than 0.99. For the four analytes, the limits of detection and limits of quantitation were in the ranges of 0.13-0.23 mg/L and 0.45-0.60 mg/L, respectively. The intraday, interday, and column-to-column relative standard deviations (RSDs) of the migration time and peak area were less than 9.4%. These results revealed that the established method has good repeatability and high stability, thus being suitable for the separation and detection of nitrophenol EEDs. The mechanism studies revealed that the pore size of ACOF-1 was the main factor influencing the separation behavior of each analyte. This work demonstrated the feasibility of using capillary electrochromatography with COFs as the stationary phase for the separation and detection of EEDs. Future research will continue to focus on the preparation of COF-coated capillaries and their application to OT-CEC separation and determination of EEDs.

Key words: open-tubular capillary electrochromatography (OT-CEC), covalent organic frameworks, environmental endocrine disruptors, nitrophenols