色谱 ›› 2021, Vol. 39 ›› Issue (9): 981-988.DOI: 10.3724/SP.J.1123.2021.08012
收稿日期:
2021-08-13
出版日期:
2021-09-08
发布日期:
2021-09-06
通讯作者:
白玉
作者简介:
* Tel:(010)62758198,E-mail: yu.bai@pku.edu.cn.基金资助:
GAO Wenjie, BAI Yu*(), LIU Huwei
Received:
2021-08-13
Online:
2021-09-08
Published:
2021-09-06
Contact:
BAI Yu
Supported by:
摘要:
蛋白质糖基化作为最重要的翻译后修饰之一,在生物体诸如细胞信号转导、蛋白质翻译调控、免疫应答等诸多生命过程中发挥重要作用。此外,蛋白质的异常糖基化还与肿瘤等疾病的发生发展密切相关,这为以糖蛋白为目标的疾病生物标志物的发现提供了可能。尽管质谱已经成为糖蛋白质组学的重要分析工具,但糖肽的低丰度和低电离效率使得其直接质谱分析仍面临挑战。在糖蛋白质组学研究中,从复杂的生物样品中富集糖蛋白和糖肽是重要的环节。磁性固相萃取(MSPE)是一种操作简单、成本低和萃取效率高的样品预处理方法。在磁性固相萃取中,磁性吸附剂是影响萃取效果的关键,将功能化磁性纳米材料作为吸附剂进行糖蛋白质组学研究已经得到广泛应用。该文综述了糖分子、离子液体、凝集素、硼酸亲和配体、金属有机框架、共价有机骨架等功能化磁性纳米材料的制备及其在糖蛋白及糖肽富集中的应用。上述功能化磁性纳米材料具有高比表面积、大量作用位点等特点,其富集机理包括亲水相互作用色谱、凝集素亲和作用色谱、硼酸化学法和肼化学法等,主要应用于血清、血浆、细胞、组织、唾液等样品的糖蛋白和糖肽的富集。该文引用了近十年来发表的约90篇源于科学引文索引(SCI)与中文核心期刊的相关论文,并于文末对磁性纳米材料在糖蛋白和糖肽富集领域的发展趋势进行了展望。
中图分类号:
高文杰, 白玉, 刘虎威. 功能化磁性纳米材料在糖蛋白及糖肽富集中的研究进展[J]. 色谱, 2021, 39(9): 981-988.
GAO Wenjie, BAI Yu, LIU Huwei. Recent advances in functionalized magnetic nanomaterials for glycoprotein and glycopeptide enrichment[J]. Chinese Journal of Chromatography, 2021, 39(9): 981-988.
图1 Fe3O4-PEI-pMaltose纳米颗粒的制备及N-连接糖肽选择性富集的示意图[21]
Fig. 1 Schematic illustration of the fabrication of Fe3O4-PEI-pMaltose NPs and the selectiveenrichment process for the N-linked glycopeptides[21] PEI: polyethyleneimine; NPs: nanoparticles; THF: tetrahydrofuran; NHS: N-hydroxysuccinimide.
图2 3种凝集素包被磁珠用于糖肽富集[65]
Fig. 2 Glycopeptide enrichment using magnetic particles coated with three kinds of lectins[65] ConA: concanavalin A; AAL: aleuria aurantia lectin; SNA: sambucus nigra agglutinin; MNP: magnetic particle.
图3 树状分子缀合硼酸衍生物(DBA)磁珠与糖肽协同相互作用的原理图[79]
Fig. 3 Principal of the synergistic interactions between the dendrimer-conjugated boronic acid derivative (DBA) beads and glycopeptide[79]
图4 Fe3O4@PMAH核壳磁性纳米复合材料的合成过程[89]
Fig. 4 Synthetic procedure for the preparation of Fe3O4@PMAH core-shell magnetic nanocomposites[89] PMAH: poly(methacrylic hydrazide); MCNCs: magnetite colloidal nanocrystal clusters; HATU: O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate.
[1] |
Glass C K, Saijo K, Winner B, et al. Cell, 2010, 140(6): 918
DOI URL |
[2] |
Hart G W, Slawson C, Ramirez-Correa G, et al. Annu Rev Biochem, 2011, 80:825
DOI URL |
[3] |
Pinho S S, Reis C A. Nat Rev Cancer, 2015, 15(9): 540
DOI URL |
[4] |
Duffy M J, Sturgeon C, Lamerz R, et al. Ann Oncol, 2010, 21(3): 441
DOI PMID |
[5] |
Kumada T, Toyoda H, Tada T, et al. J Gastroenterol, 2014, 49(3): 555
DOI URL |
[6] |
Romero Otero J, Garcia Gomez B, Campos Juanatey F, et al. Urol Oncol, 2014, 32(3): 252
DOI URL |
[7] |
Simonds H M, Miles D. Expert Opin Biol Ther, 2007, 7(4): 487
PMID |
[8] |
Alley W R, Mann B F, Novotny M V. Chem Rev, 2013, 113(4): 2668
DOI URL |
[9] |
Alvarez-Manilla G, Atwood J, Guo Y, et al. J Proteome Res, 2006, 5(3): 701
PMID |
[10] |
Chen C C, Su W C, Huang B Y, et al. Analyst, 2014, 139(4): 688
DOI PMID |
[11] |
Qing G Y, Yan J Y, He X N, et al. TrAC-Trends Anal Chem, 2020, 124:115570
DOI URL |
[12] |
Zhang H, Li X J, Martin D B, et al. Nat Biotechnol, 2003, 21(6): 660
PMID |
[13] |
Kaji H, Saito H, Yamauchi Y, et al. Nat Biotechnol, 2003, 21(6): 667
DOI URL |
[14] |
Gao X D, Zhang W B. Chinese Journal of Chromatography, 2016, 34(8): 745
DOI URL |
高小迪, 张维冰. 色谱, 2016, 34(8): 745 | |
[15] |
Zhang L, Yue X F, Li N, et al. Anal Chim Acta, 2019, 1088:63
DOI PMID |
[16] |
Lu J, Luan J, Li Y, et al. J Chromatogr A, 2020, 1615:460754
DOI URL |
[17] | Liu Y B, Ma W D, He Y T, et al. Anal Lett, 2021, 56(4): 966 |
[18] | Bi C F, Yuan Y, Tu Y R, et al. Sci Rep-UK, 2020, 10(1): 71 |
[19] |
Li Y L, Deng C H, Sun N R. Anal Chim Acta, 2018, 1024:84
DOI URL |
[20] |
Xiong Z C, Zhao L, Wang F J, et al. Chem Commun (Camb), 2012, 48(65): 8138
DOI URL |
[21] |
Bi C F, Liang Y L, Shen L J, et al. ACS Omega, 2018, 3(2): 1572
DOI URL |
[22] |
Zhan Q L, Zhao H L, Hong Y Y, et al. Mikrochim Acta, 2019, 186(9): 600
DOI URL |
[23] |
Wang J X, Li J, Gao M X, et al. Nanoscale, 2017, 9(30): 10750
DOI URL |
[24] |
Wang H P, Jiao F L, Gao F Y, et al. J Mater Chem B, 2017, 5(22): 4052
DOI URL |
[25] |
Yi L H, Yan Y H, Tang K Q, et al. Anal Methods, 2020, 12(38): 4657
DOI URL |
[26] |
Liu B, Lu Y J, Wang B C, et al. Chemistryselect, 2019, 4(7): 2200
DOI URL |
[27] |
Xie Y Q, Deng C H. Sci Rep, 2017, 7(1): 1162
DOI URL |
[28] |
Xie Y Q, Deng C H, Li Y. J Chromatogr A, 2017, 1508:1
DOI URL |
[29] |
Wu Y L, Liu Q J, Xie Y Q, et al. Talanta, 2018, 190:298
DOI URL |
[30] |
Zheng H Y, Guan S, Wang X T, et al. Anal Chem, 2020: 92(13): 9239
DOI URL |
[31] |
Wu Y L, Sun N R, Deng C H. ACS Appl Mater Inter, 2020: 12(8): 9814
DOI URL |
[32] |
Zheng H J, Jia J X, Li Z, et al. Anal Chem, 2020, 92(3): 2680
DOI URL |
[33] |
Chen Y J, Xiong Z C, Zhang L Y, et al. Nanoscale, 2015, 7(7): 3100
DOI URL |
[34] |
Wu R Q, Xie Y, Deng C H. Talanta, 2016, 160:461
DOI URL |
[35] |
Zhao Y M, Chen Y J, Xiong Z C, et al. J Chromatogr A, 2017, 1482:23
DOI URL |
[36] |
Qi H, Li Z, Zheng H J, et al. Chinese Chem Lett, 2019, 30(12): 2181
DOI URL |
[37] |
Ji Y S, Lv R H, Song S H, et al. Anal Chim Acta, 2019, 1053:43
DOI URL |
[38] |
Wu R Q, Li L T, Deng C H. Proteomics, 2016, 16(9): 1311
DOI URL |
[39] |
Jiao F L, Gao F Y, Wang H P, et al. Anal Chim Acta, 2017, 970:47
DOI URL |
[40] |
Huan W W, Zhang J S, Qin H, et al. Nanoscale, 2019, 11(22): 10952
DOI URL |
[41] |
Wu Y L, Liu Q J, Deng C H. Anal Chim Acta, 2019, 1061:110
DOI URL |
[42] |
Feng X Y, Deng C H, Gao M X, et al. Anal Bioanal Chem, 2018, 410(3): 989
DOI URL |
[43] | Liu B, Wang B C, Yan Y H, et al. Rapid Commun Mass Sp, 2020, 34(5): 8607 |
[44] |
Zhang H Q, Lv Y Y, Du J, et al. Anal Chim Acta, 2020, 1098:181
DOI URL |
[45] |
Liu Q J, Deng C H, Sun N R. Nanoscale, 2018, 10(25): 12149
DOI URL |
[46] |
Wang Z D, Wu R Q, Chen H M, et al. Nanoscale, 2018, 10(11): 5335
DOI URL |
[47] |
Luo B, He J, Li Z Y, et al. ACS Appl Mater Inter, 2019, 11(50): 47218
DOI URL |
[48] |
Zhang Q Q, Huang Y Y, Jiang B Y, et al. Anal Chem, 2018, 90(12): 7357
DOI URL |
[49] |
Sun N R, Wu H, Shen X Z. Microchim Acta, 2020, 187(3): 195
DOI URL |
[50] |
Wang J W, Yao J Z, Sun N R, et al. J Chromatogr A, 2017, 1512:1
DOI URL |
[51] |
Jiang B, Wu Q, Zhang L H, et al. Nanoscale, 2017, 9(4): 1607
DOI PMID |
[52] |
Hu X F, Liu Q J, Wu Y L, et al. Talanta, 2019, 204:446
DOI URL |
[53] |
Jiang B, Wu Q, Deng N, et al. Nanoscale, 2016, 8(9): 4894
DOI PMID |
[54] |
Chu H M, Hu X F, Yao J Z, et al. Talanta, 2020, 206:120178
DOI URL |
[55] |
Hong Y Y, Zhan Q L, Zheng Y, et al. Talanta, 2019, 197:77
DOI URL |
[56] |
Sun N R, Wang J W, Yao J Z, et al. Anal Chem, 2017, 89(3): 1764
DOI URL |
[57] |
Sun N R, Wang J W, Yao J Z, et al. Microchim Acta, 2019, 186(3): 159
DOI URL |
[58] |
Wang J X, Li J, Yan G Q, et al. Nanoscale, 2019, 11(8): 3701
DOI URL |
[59] |
Dela Rosa M A, Chen W C, Chen Y J, et al. Anal Chem, 2017, 89(7): 3973
DOI URL |
[60] |
Ahn Y H, Shin P M, Kim Y S, et al. Analyst, 2013, 138(21): 6454
DOI URL |
[61] |
Loo D, Jones A, Hill M M. J Proteome Res, 2010, 9(10): 5496
DOI URL |
[62] |
Choi E, Loo D, Dennis J W, et al. Electrophoresis, 2011, 32(24): 3564
DOI URL |
[63] |
Caragata M, Shah A K, Schulz B L, et al. Anal Biochem, 2016, 497:76
DOI PMID |
[64] |
Shah A K, Cao K A, Choi E, et al. Mol Cell Proteomics, 2015, 14(11): 3023
DOI URL |
[65] |
Waniwan J T, Chen Y J, Capangpangan R, et al. J Proteome Res, 2018, 17(11): 3761
DOI URL |
[66] |
Weith H L, Wiebers J L, Gilham P T. Biochemistry-US, 1970, 9(22): 4396
PMID |
[67] |
Jiang B, Qu Y Y, Zhang L H, et al. Anal Chim Acta, 2016, 912:41
DOI PMID |
[68] |
Zhang J, He T, Tang L, et al. J Sep Sci, 2016, 39(9): 1691
DOI PMID |
[69] |
Li D J, Bie Z J. Analyst, 2017, 142(23): 4494
DOI URL |
[70] | Shi Z H, Pu L Y, Guo Y S, et al. Sci Rep-UK, 2017, 7(1): 4603 |
[71] |
Li S S, Li D Y, Sun L, et al. RSC Adv, 2018, 8(13): 6887
DOI URL |
[72] |
Sajid M S, Jovcevski B, Mittal P, et al. Microchem J, 2020, 159:105351
DOI URL |
[73] |
Yao J Z, Wang J W, Sun N R, et al. Nanoscale, 2017, 9(41): 16024
DOI URL |
[74] |
Sun X Y, Ma R T, Chen J, et al. Microchim Acta, 2018, 185(12): 565
DOI URL |
[75] |
Wang H Y, Bie Z J, Lu C C, et al. Chem Sci, 2013, 4(11): 4298
DOI URL |
[76] |
Xie Y Q, Liu Q J, Li Y, et al. J Chromatogr A, 2018, 1540:87
DOI URL |
[77] |
Su J, He X W, Chen L X, et al. Talanta, 2018, 180:54
DOI URL |
[78] | Luo B, Chen Q, He J, et al. ACS Sustain Chem & Eng, 2019, 7(6): 6043 |
[79] |
Xiao H P, Chen W X, Smeekens J M, et al. Nat Commun, 2018, 9(1): 1692
DOI URL |
[80] |
Zhang X H, Wang J W, He X W, et al. ACS Appl Mater Inter, 2015, 7(44): 24576
DOI URL |
[81] |
Zhang X H, He X W, Chen L X, et al. J Mater Chem B, 2014, 2(21): 3254
DOI URL |
[82] |
Zhang Y T, Ma W F, Li D, et al. Small, 2014, 10(7): 1379
DOI URL |
[83] |
Wu Q, Jiang B, Weng Y J, et al. Anal Chem, 2018, 90(4): 2671
DOI URL |
[84] |
Zou Z Q, Ibisate M, Zhou Y, et al. Anal Chem, 2008, 80(4): 1228
DOI URL |
[85] |
Berven F S, Ahmad R, Clauser K R, et al. J Proteome Res, 2010, 9(4): 1706
DOI PMID |
[86] |
Shakey Q, Bates B, Wu J A. Anal Chem, 2010, 82(18): 7722
DOI PMID |
[87] |
Wang L, Aryal U K, Dai Z Y, et al. J Proteome Res, 2012, 11(1): 143
DOI PMID |
[88] |
Kuzmanov U, Musrap N, Kosanam H, et al. Clin Chem Lab Med, 2013, 51(7): 1467
DOI PMID |
[89] |
Liu L T, Yu M, Zhang Y, et al. ACS Appl Mater Inter, 2014, 6(10): 7823
DOI URL |
[1] | 李婷, 常蒙蒙, 石先哲, 许国旺. 分子印迹聚合物在极性农药残留检测中的应用进展[J]. 色谱, 2021, 39(9): 930-940. |
[2] | 周丽慧, 肖小华, 李攻科. 干果类食品的样品前处理与分析检测方法研究进展[J]. 色谱, 2021, 39(9): 958-967. |
[3] | 贾璞, 边阳阳, 白亚军, 孟雪, 高朔漠, 赵晔, 蔡宇杰, 郑晓晖. 色谱在药物-机体复杂巨系统研究中的应用进展[J]. 色谱, 2021, 39(9): 950-957. |
[4] | 张文敏, 李青青, 方敏, 高佳, 陈宗保, 张兰. 金属有机骨架衍生材料在样品前处理中的应用研究进展[J]. 色谱, 2021, 39(9): 941-949. |
[5] | 柴佩君, 宋志花, 刘万卉, 薛俊萍, 王硕, 刘金秋, 李金花. 碳点在抗生素分析检测中的应用[J]. 色谱, 2021, 39(8): 816-826. |
[6] | 张昱, 齐骥, 刘丰, 王宁, 孙西艳, 崔荣, 于佳洛, 叶嘉明, 刘萍, 李博伟, 陈令新. 微流控纸芯片在环境分析检测中的应用[J]. 色谱, 2021, 39(8): 802-815. |
[7] | 朱树芸, 赵先恩, 刘虎威. 醛类标志物的化学衍生化色谱-质谱分析方法进展[J]. 色谱, 2021, 39(8): 845-854. |
[8] | 姜皓文, 李健, 谭志强, 郭瑛瑛, 刘艳伟, 胡立刚, 阴永光, 蔡勇, 江桂斌. 无固定相分离-电感耦合等离子体质谱法在环境中痕量金属纳米颗粒分析中的应用[J]. 色谱, 2021, 39(8): 855-869. |
[9] | 张一清, 郭珊珊, 孙倩. 冷冻干燥技术在环境水样有机新污染物前处理中的应用进展[J]. 色谱, 2021, 39(8): 827-834. |
[10] | 尚诗婷, 董航言, 李圆圆, 张万军, 李航, 秦伟捷, 钱小红. 人尿液N-糖蛋白/N-糖肽规模化富集鉴定[J]. 色谱, 2021, 39(7): 686-694. |
[11] | 盛骞莹, 周扬, 赵治全, 王耀慧, 李伟诚, 柯燕雄, 蓝闽波, 卿光焱, 梁鑫淼. 共价有机骨架功能材料及其在糖肽选择性富集中的应用[J]. 色谱, 2021, 39(6): 588-598. |
[12] | 梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577. |
[13] | 邢仕歌, 贺木易, 刘通, 雍炜, 张峰. 固相萃取材料在金属离子前处理应用中的研究进展[J]. 色谱, 2021, 39(5): 455-462. |
[14] | 廖颖敏, 黄晓佳, 王卓卓, 甘蕊. 基于碳基磁性材料的磁固相萃取技术在食品分析应用中的研究进展[J]. 色谱, 2021, 39(4): 368-375. |
[15] | 温翰荣, 朱珏, 张博. 芯片液相色谱技术进展[J]. 色谱, 2021, 39(4): 357-367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||