色谱 ›› 2017, Vol. 35 ›› Issue (3): 286-290.DOI: 10.3724/SP.J.1123.2016.09048

• 研究论文 • 上一篇    下一篇

衍生化β-环糊精手性固定相高效液相色谱法 拆分米那普仑对映体及其分离机制

郑振1,2, 陈秀娟1,3, 赵亮4, 李武宏1, 洪战英1, 柴逸峰1   

  1. 1. 第二军医大学药学院, 上海 200433;
    2. 解放军91837部队卫生队, 浙江 舟山 316291;
    3. 福建中医药大学, 福建 福州 350108;
    4. 第二军医大学东方肝胆外科医院药材科, 上海 200438
  • 收稿日期:2016-09-30 出版日期:2017-03-08 发布日期:2013-07-16
  • 通讯作者: 李武宏,Tel:(021)81871219-5,E-mail:nkwuhongli@126.com;洪战英,Tel:(021)81871261-85,E-mail:hongzhy001@163.com.
  • 基金资助:

    国家自然科学基金项目(81202497,81373376).

Enantioseparation of milnacipran enantiomers and the separation mechanism on β-cyclodextrin-based chiral stationary phases by high performance liquid chromatography

ZHENG Zhen1,2, CHEN Xiujuan1,3, ZHAO Liang4, LI Wuhong1, HONG Zhanying1, CHAI Yifeng1   

  1. 1. School of Pharmacy, Second Military Medical University, Shanghai 200433, China;
    2. Medical Corps, 91837 Unit, People's Liberation Army of China, Zhoushan 316291, China;
    3. Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China;
    4. Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
  • Received:2016-09-30 Online:2017-03-08 Published:2013-07-16
  • Supported by:

    National Natural Science Foundation of China (Nos. 81202497, 81373376).

摘要:

建立了新型抗抑郁药米那普仑在环糊精手性固定相上的高效液相色谱拆分方法。在反相色谱条件下采用未衍生化β-环糊精(Cyclobond I 2000)、乙酰基-β-环糊精(AC-β-CD)、2,3-二甲基-β-环糊精(DM-β-CD)、3,5-二甲基苯基氨基甲酸酯-β-环糊精(DMP-β-CD)4种手性柱分离米那普仑对映体。考察了固定相、流动相比例、pH、流速和柱温对拆分的影响。利用分子对接和结合能计算方法,研究米那普仑分子与AC-β-CD的对接过程,探讨其可能的分离机制。优化后的拆分条件如下:固定相为乙酰基-β-环糊精手性柱Astec CYCLOBONDTM I 2000 AC(25 cm×4.6 mm,5 μm),流动相为乙腈-0.1%(体积分数)pH 5.0醋酸三乙胺溶液(TEAA)(5:95,v/v),流速为0.4 mL/min,柱温为25 ℃,检测波长为220 nm。在此条件下,米那普仑对映体获得快速拆分,分离度(Rs)为1.74,理论塔板数为10125。分子模拟结果表明引起手性识别的作用力主要是环糊精衍生化的乙酰基导致的氢键作用差异。该方法快速、高效、重现性好。

关键词: -环糊精类手性固定相, &beta, 反相高效液相色谱法, 分离机制, 米那普仑, 手性拆分

Abstract:

A high performance liquid chromatography method was established for the enantiomeric separation of milnacipran enantiomers on β-cyclodextrin-based chiral stationary phases (CSPs). Chiral columns of Astec CYCLOBONDTM I 2000 series, such as the native β-cyclodextrin (Cyclobond I 2000), acetyl-β-cyclodextrin (AC-β-CD), 2,3-dimethyl-β-cyclodextrin (DM-β-CD) and 3,5-dimethylphenyl carbamate β-cyclodextrin (DMP-β-CD), were examined under the reversed-phase mode. The effects of cyclodextrin stationary phase, mobile phase composition, pH, flow rate and column temperature on the separation of milnacipran enantiomers were investigated. The inclusion process between AC-β-CD and milnacipran enantiomers was investigated and chiral recognition mechanism was studied with molecular docking technique and binding energy calculations. The optimized conditions were as follows: the chiral stationary phase was a column of Astec CYCLOBONDTM I 2000 AC (25 cm×4.6 mm, 5 μm), the mobile phase was acetonitrile-0.1% (v/v) pH 5.0 triethylamine acetate (TEAA) (5:95, v/v) with a flow rate of 0.4 mL/min and the detection wavelength was 220 nm. The injection volume was 10 μL and the column temperature was 25℃. The value of resolution (Rs) was 1.74 and the theoretical plates were 10125. The results suggested that hydrogen bonding ability played an important role in the chiral recognition process of milnacipran enantiomers. The developed method was rapid, effective and reproducible.

Key words: β-cyclodextrin-based chiral stationary phase, chiral separation, milnacipran, reversed-phase high performance liquid chromatography (RP-HPLC), separation mechanism

中图分类号: