Chinese Journal of Chromatography

2024, Vol. 42, No. 4
Online: 08 April 2024

CN 21-1185/O6
ISSN 1000-8713
Editors-in-Chief: Prof. Yukui Zhang
For Selected: Toggle Thumbnails
Review
Applications of ion chromatography for the analysis of Chinese herbal medicine components
ZHANG Baoxin, TIAN Jingqin, CHAI Guozhu, HE Wenqi, LAN Xiaozhong, HAN Xinghao
2024, 42 (4):  311-326.  DOI: 10.3724/SP.J.1123.2023.10009
Abstract ( 174 )   HTML ( 19 )   PDF (1495KB) ( 51 )  

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components.

This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported.

Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.

Communication
Deep eutectic solvents synergistic with carboxymethyl -β-cyclodextrin on the improvement of chiral separation of metoprolol by capillary electrophoresis
LI Xiaoqian, XIA Zhining
2024, 42 (4):  327-332.  DOI: 10.3724/SP.J.1123.2024.01024
Abstract ( 36 )   HTML ( 7 )   PDF (855KB) ( 14 )  

The physical and chemical properties of chiral drugs are very similar. However, their pharmacological and toxicological effects vary significantly. For example, one enantiomer may have favorable properties whereas the other may be ineffective or even have toxic side effects. Hence, exploring innovative strategies to improve enantiomeric resolution is of great importance. Metoprolol (MET) is a β-receptor blocker used to treat hypertension, stable angina pectoris, and supraventricular tachyarrhythmia. Establishing chiral separation and analysis methods of MET enantiomers is important for enhancing the quality of chiral drugs. Capillary electrophoresis (CE) has the advantages of a small sample size, simple operation, high separation efficiency, and many alternative modes; therefore it is widely used in the field of chiral drug separation. The chiral selectors commonly used for CE-based chiral separation include cyclodextrin (CD) and its derivatives, polysaccharides, proteins, and macrocyclic antibiotics. CD is one of the most commonly used and effective chiral selectors for CE. The relatively hydrophobic structure inside the cavity and the relatively hydrophilic structure outside the cavity of CD enable it and chiral molecules to form inclusion compounds with different binding constants, thus achieving chiral separation. However, the use of CD alone as a chiral selector does not always yield satisfactory separation results. Hence, the addition of other additives, such as ionic liquids and deep eutectic solvents (DESs) to assist CD-based chiral separation systems has received extensive attention. Previous studies on the enantiomeric separation of MET by CE have focused on the addition of CD and its derivatives alone for separation. Few studies have been conducted on the synergistic addition of auxiliary additives to CD to improve the enantiomeric resolution of MET. In this study, three DESs, namely, choline chloride-D-glucose, choline chloride-D-fructose, and lactate-D-glucose, were used for the CE-based chiral separation of MET for the first time, and the synergistic effect of the DESs on the separation of MET enantiomers by CD-based capillary zone electrophoresis was speculated. For this purpose, an uncoated fused silica capillary with inner diameter of 50 μm, total length of 50 cm and effective length of 41.5 cm was used as the separation column. First, the effects of CD type, CD concentration, buffer pH, and buffer concentration on MET separation were investigated, and the optimal conditions (15 mmol/L carboxymethyl-β-cyclodextrin (CM-β-CD), pH=3.0, and 40 mmol/L phosphate buffer) were obtained. Other CE conditions were as follows: UV detection at 230 nm, applied voltage of 25 kV. All operations were carried out at 20 ℃. Next, three types of DESs were prepared as auxiliary additives via a mixed-heating method. The DESs were mixed in a 50 mL round-bottomed flask at a certain molar ratio and then heated in a water bath at 80 ℃ for 3 h until a clear and transparent liquid was obtained. The effects of different DESs and their mass fraction on chiral separation were subsequently studied. The optimal choline chloride-D-fructose mass fraction was ultimately determined to be 1.5%. The resolution of MET increased from 1.30 without DES to 2.61 with 1.5% choline chloride-D-fructose, thereby achieving baseline separation. Finally, the separation effect and mechanism were speculated. The MET chiral separation method established in this study is of great significance for improving the quality of chiral compounds and ensuring the safety and effectiveness of clinical drugs. Furthermore, it may be useful in the research and development of CE-based chiral separation techniques using CD derivatives with DESs.

Articles
Deciphering cellular processes responding to lethality of 17β-estradiol by quantitative phosphoproteomics
LI Yanan, LIU Xiaoyan, WANG Yan, LIU Zhen, YE Mingliang, WANG Hailin
2024, 42 (4):  333-344.  DOI: 10.3724/SP.J.1123.2023.04025
Abstract ( 58 )   HTML ( 14 )   PDF (5197KB) ( 26 )  

17β-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available.

In the present study, we attempted to characterize the cellular processes responding to high-dose (μmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 μmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 μmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 μmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.

Determination of adenosine content in heart tissue by ultra performance liquid chromatography-triple quadrupole mass spectrometry
ZHU Zuoyin, GUO Wenbo, ZHAO Hanke, WANG Jie, YANG Junhua, ZHOU Xinli
2024, 42 (4):  345-351.  DOI: 10.3724/SP.J.1123.2023.09016
Abstract ( 51 )   HTML ( 13 )   PDF (985KB) ( 23 )  

A method based on ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was developed and validated for the rapid and accurate determination of adenosine (Ado) in cardiac tissues with high sensitivity and specificity. The samples were dissolved in 1 mL of ultrapure water containing 10 μmol/L 2-hydroxy-3-nonyladenine hydrochloride (EHNA) as a stabilizer, ground at low temperature for 2 min, and then ultrasonically extracted at 60 Hz in an ice-water bath for 40 min. Methanol and 5 mmol/L ammonium acetate solution were used as the mobile phases under a flow rate of 0.4 mL/min, a column temperature of 40 ℃ and an injection volume of 3 μL. The Ado in cardiac tissue was qualitatively and quantitatively analyzed by electrospray ionization (ESI) positive-ion-switching in multiple reaction monitoring (MRM) mode. A solvent standard curve and the external standard method were used for the accurate quantification of Ado. The results showed that the matrix effect of Ado in cardiac tissue was very low. A good linear relationship was obtained in the range of 0.1-160 ng/mL, and the correlation coefficient (r2) was 0.9930. The limits of detection (LOD) and quantification (LOQ) were 0.03 and 0.1 ng/mL, respectively. The spiked recoveries of Ado in murine cardiac tissue were 113.6%, 96.3%, and 102.9% at three spiked levels of low, medium, and high, respectively. The intra-day repeatability (RSDs) were 1.7%-8.4%, and the inter-day reproducibility (RSDs) were 2.6%-7.4%. Based on the correlation and consistency results, a positive bias was observed between the proposed UPLC-MS/MS method and the double-antibody sandwich method. Moreover, the Ado contents detected by these two methods were significantly positively correlated (P<0.0001). Cardiac tissue samples were collected from 17 mice and 17 rats and detected in our laboratory. The content ranges of Ado in the cardiac tissues of mice and rats determined by the developed UPLC-MS/MS method were 3.25-8.78 mg/kg and 10.24-15.19 mg/kg, respectively (average adenosine contents: 5.37 and 12.60 mg/kg, respectively). The developed method is simple, accurate, sensitive, and it is suitable for the determination of Ado in cardiac tissues. It also provides important technical support for cardiac clinical research and disease diagnosis.

High performance liquid chromatography combined with the 2,2'-dithiodipyridine derivatization reaction for determination of different types of free thiols in human serum and analysis of their relationship with coronary heart disease
SHAO Zhiyu, ZENG Jie, DONG Jun, LI Hongxia, YANG Ruiyue, CHEN Wenxiang, WANG Siming
2024, 42 (4):  352-359.  DOI: 10.3724/SP.J.1123.2024.02001
Abstract ( 34 )   HTML ( 8 )   PDF (1199KB) ( 16 )  

Oxidative stress, which is characterized by an imbalance between antioxidants and free radicals, plays a pivotal role in the pathogenesis of coronary heart disease, a common and serious cardiovascular condition, and contributes significantly to its development and progression. Serum free thiols are crucial components of the body’s antioxidant defense system. The accurate determination of serum free thiol levels provides a reference basis for understanding the body’s status and monitoring the risk factors associated with the occurrence and progression of coronary heart disease. In this study, a high performance liquid chromatographic (HPLC) method based on the derivatization reaction of 2,2'-dithiodipyridine was developed to simultaneously obtain the concentrations of total free thiols (Total-SH), low-molecular-mass free thiols (LMM-SH), and protein-free thiols (P-SH) in human serum. An Agilent Eclipse XDB-C18 column (150 mm×4.6 mm, 5 μm) was used for the analysis, and gradient elution was performed at a flow rate of 1 mL/min. A 0.1% formic acid aqueous solution was used as mobile phase A, and a 0.1% formic acid acetonitrile solution was used as mobile phase B. The gradient elution program was as follows: 0-0.1 min, 12%B-30%B; 0.1-2 min, 30%B; 2-2.1 min, 30%B-100%B; 2.1-6 min, 100%B; 6-6.1 min, 100%B-12%B; 6.1-7 min, 12%B. Well-separated peaks appeared after a run time of 5 min. The peak of 2-thiopyridone represented the Total-SH content of the samples, and the peak of the pyridyldithio derivative represented the LMM-SH content. The difference between these two peaks indicated the P-SH content. The derivatization reaction conditions were optimized, and the method was validated. The method demonstrated good linearity, with a correlation coefficient ≥0.9994, over the concentration range of 31.25-1000 μmol/L. The limits of detection for Total-SH and LMM-SH were 2.61 and 0.50 μmol/L, and the limits of quantification for Total-SH and LMM-SH were 8.71 and 1.67 μmol/L, respectively. The recoveries of Total-SH and LMM-SH were in the range of 91.1%-106.0%. The intra- and inter-day precisions ranged from 0.4% to 9.1%. The developed method was used to analyze serum samples from 714 volunteers. The Total-SH concentrations ranged from 376.60 to 781.12 μmol/L, with an average concentration of 555.62 μmol/L. The LMM-SH concentrations varied from 36.37 to 231.65 μmol/L,with an average of 82.34 μmol/L. The P-SH concentrations ranged from 288.36 to 687.74 μmol/L, with an average of 473.27 μmol/L. Spearman’s correlation test showed that serum thiol levels were correlated with the severity of coronary artery disease and common clinical biochemical indicators. The proposed study provides a simple and reliable HPLC method for detecting serum free thiols and exploring their relationship with coronary heart disease, offering a new reference for the study of markers related to the risk of coronary heart disease.

Preparation of a macroporous anion exchange chromatographic medium by polyamine grafting and evaluation of its protein-adsorption behavior
JIANG Zeping, GUO Wang, LI Ziyang, HOU Hengyang, HUO Wendi, WANG Jiayi, MA Lei, JIN Haibo, HUANG Yongdong, ZHANG Rongyue
2024, 42 (4):  360-367.  DOI: 10.3724/SP.J.1123.2023.11003
Abstract ( 8 )   HTML ( 3 )   PDF (9411KB) ( 4 )  

The macroporous anion exchange chromatographic medium (FastSep-PAA) was prepared through grafting polyallylamine (PAA) onto polyacrylate macroporous microspheres (FastSep-epoxy). The effects of the synthesis conditions, including the PAA concentration, reaction time, and reaction solution pH, on the ion exchange (IC) of the medium were investigated in detail. When the PAA concentration, reaction time, and reaction solution pH were increased, the IC of the medium increased, and optimal synthesis conditions were then selected in combination with changes of protein binding capacity. A scanning electron microscope was used to examine the surface morphology of the medium. The medium possessed high pore connectivity. Furthermore, the pore structure of the medium was preserved after the grafting of PAA onto the macroporous microspheres. This finding demonstrates that the density of the PAA ligands does not appear to have any discernible impact on the structure of the medium; that is, no difference in the structure of the medium is observed before and after the grafting of PAA onto the microspheres. The pore size and pore-size distribution of the medium before and after grafting were determined by mercury intrusion porosimetry and the nitrogen adsorption method to investigate the relationship between pore size (measured in the range of 300-1000 nm) and protein adsorption. When the pore size of the medium was increased, its protein binding capacity did not exhibit any substantial decrease. An increase in pore size may hasten the mass transfer of proteins within the medium. Among the media prepared, that with a pore size of 400 nm exhibited the highest dynamic-binding capacity (DBC: 70.3 g/L at 126 cm/h). The large specific surface area of the medium and its increased number of protein adsorption sites appeared to positively influence its DBC. When the flow rate was increased, the protein DBC decreased in media with original pore sizes of less than 700 nm. In the case of the medium with an original pore size of 1000 nm, the protein DBC was independent of the flow rate. The protein DBC decreased by 3.5% when the flow rate was increased from 126 to 628 cm/h. In addition, the protein DBC was maintained at 57.7 g/L even when the flow velocity was 628 cm/h. This finding reveals that the diffusion rate of protein molecules at this pore size is less restricted and that the prepared medium has excellent mass-transfer performance. These results confirm that the macroporous polymer anion exchange chromatographic medium developed in this study has great potential for the high-throughput separation of proteins.

Determination of 222 pesticide residues in olive oil by fully automatic QuEChERS pre-treatment instrument coupled with gas chromatography-quadrupole-time-of-flight mass spectrometry
LIANG Yan, LEI Chunni, WANG Bo, ZHANG Huan, WANG Xinchao, ZHOU Xiaoping, QI Zhenzhen, ZHU Mengchen
2024, 42 (4):  368-379.  DOI: 10.3724/SP.J.1123.2023.09010
Abstract ( 60 )   HTML ( 10 )   PDF (1182KB) ( 40 )  
Supporting Information

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice.

In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 μg/mL, 10.81% had linear ranges of 0.10-2.00 μg/mL, and 3.15% had linear ranges of 0.20-2.00 μg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.

Hologram quantitative structure-activity relationship on the gas chromatographic retention index of plant essential oil constituents
GUO Rui, JIAO Long, HU Zubiao, WANG Qingchen, ZHONG Hanbin, JING Mingli
2024, 42 (4):  380-386.  DOI: 10.3724/SP.J.1123.2023.07011
Abstract ( 13 )   HTML ( 6 )   PDF (1036KB) ( 12 )  

The gas chromatography retention index (RI) is an important parameter for the identification of different types of compounds in the field of chromatographic analysis; however, the experimental collection of RI values is a extremely cumbersome process. Thus, there is an urgent need for the establishment of a simple, efficient, and accurate model for the prediction of the RI values of compounds. In this study, first, the experimental RI values for 60 plant essential oil constituents were obtained. Next, a model describing the hologram quantitative structure-activity relationship (HQSAR) between the structural properties of the essential oil constituents and their RI values was investigated and constructed. The optimal HQSAR model was established by setting the model parameters “fragment size”, “fragment distinction”, “hologram length” and “principal components” to “1-4”, “C, Ch”, “199”, and “4”, respectively. Finally, the predictive ability of the model was verified using external test set validation and leave-one-out cross-validation (LOO-CV). The experimental results were as follows, the root mean square error of prediction (RMSEP), predictive determination coefficient ( Q F 3 2), concordance correlation coefficient (CCC), and mean relative error (MRE) for external test set validation were 40.45, 0.984, 0.968, and 2.20%, respectively. Meanwhile, the root mean square error of cross validation (RMSECV) and MRE for LOO-CV were 72.56 and 4.17%, respectively. These findings demonstrate that the established HQSAR model has a good predictive ability and can accurately predict the RI values of plant essential oil constituents. In addition, the molecular contribution maps of the HQSAR model revealed that the RI values of aromatic compounds increase when hydroxyl groups are connected to their alkyl chains. Aliphatic compounds feature long chain alkyl groups, which can lead to an increase in RI values. The above phenomena highlight the promising application prospects of HQSAR for studying the RI values of plant essential oil constituents. Therefore, this study provides a reliable theoretical basis for predicting the RI values of other essential oil constituents.

Technical Note
Determination of six halogenated solvent residues in olive oil by headspace gas chromatography
LEI Chunni, WANG Bo, GU Qiang, ZHANG Huan, ZHANG Xiaomei, LI Jianke
2024, 42 (4):  387-392.  DOI: 10.3724/SP.J.1123.2023.08018
Abstract ( 54 )   HTML ( 7 )   PDF (1006KB) ( 30 )  

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.

Teaching Research
Opening experiments: synthesis, purification, and characterization of polyethyleneimine-modified carbon dots
LI Rui, XU Guanhong, YU Hailin, CEN Yao, PENG Yan, SHEN Fanli, WEI Fangdi
2024, 42 (4):  393-398.  DOI: 10.3724/SP.J.1123.2023.12017
Abstract ( 27 )   HTML ( 9 )   PDF (3301KB) ( 15 )  

Open experiments are an effective means of cultivating top-notch innovative talents. Based on student interests, research hotspots and our laboratory conditions, an experimental scheme was designed. In this experiment, polyethyleneimine modified carbon dots (PEI-CDs) were prepared via a one-step hydrothermal method using citric acid (CA) as the carbon source and PEI as the surface passivator. First, CA and PEI were completely dissolved in 0.1 mol/L HCl and transferred into an autoclave. The autoclave was heated to 130 ℃ for 2 h. PEI-CDs solution was obtained. After cooling to room temperature, the solution was concentrated to 2 mL by rotary evaporation. Finally, the PEI-CDs were precipitated, washed with ethanol, and dried under vacuum at 70 ℃ for 12 h. The obtained PEI-CDs were characterized by fluorescence spectrophotometry, absorption spectrophotometry, infrared spectrometry, and transmission electron microscopy. The results indicated that anhydrous-ethanol precipitation is a simple, rapid, economical, and green purification method. The as-prepared PEI-CDs had unique properties, such as good water solubility, high luminescence, uniform particle sizes, and good stability. Through this open experiment, students can not only master the operation of large-scale instruments but also enhance their interest in scientific research.