色谱 ›› 2020, Vol. 38 ›› Issue (1): 127-136.DOI: 10.3724/SP.J.1123.2019.06014
收稿日期:
2019-06-19
出版日期:
2020-01-08
发布日期:
2020-12-11
通讯作者:
胡斌
作者简介:
胡斌, Tel:(027)68752162, E-mail:binhu@whu.edu.cn基金资助:
XIAO Zuowei, HE Man, CHEN Beibei, HU Bin()
Received:
2019-06-19
Online:
2020-01-08
Published:
2020-12-11
Contact:
HU Bin
Supported by:
摘要:
通过简单的搅拌共混方式制备了磁性氨基功能化的金属有机骨架化合物(MOFs)材料,得到的复合材料磁性和热稳定性良好,比表面积大,被用于不同极性防腐剂(苯甲酸、山梨酸、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯)的萃取。优化磁固相萃取及解吸条件后,将解吸液引入高效液相色谱-紫外检测分析仪器,采用Purospher® STAR LP C18色谱柱(250 mm×4.6 mm,5 μm)分离,以甲醇-10 mmol/L醋酸铵水溶液(50:50,v/v)为流动相进行梯度洗脱。结果表明,目标防腐剂的检出限为0.51~1.89 μg/L;苏打水、维生素饮料和方便面面饼中目标防腐剂的加标回收率为72.2%~109%。该方法简单快速,准确可靠,适用于饮料和食品中不同极性防腐剂的分析,为食品安全及质量监控提供了有效的技术有段。
肖作为, 何蔓, 陈贝贝, 胡斌. 基于金属有机骨架材料的磁固相萃取与高效液相色谱-紫外检测法分析饮料和方便面中4种防腐剂[J]. 色谱, 2020, 38(1): 127-136.
XIAO Zuowei, HE Man, CHEN Beibei, HU Bin. Analysis of four preservatives in beverages and instant noodle samples by high performance liquid chromatography-ultraviolet detection coupled with magnetic solid phase extraction based on metal-organic frameworks[J]. Chinese Journal of Chromatography, 2020, 38(1): 127-136.
图2 Fe3O4@SiO2@UiO-66-NH2的(a)透射电镜(TEM)图、(b)磁滞回线、(c)XRD图、(d)热重曲线和(e)氮气吸附/脱附曲线
Fig. 2 (a) Transmission electron microscopy (TEM) image, (b) magnetic hysteresis loops, (c) X-ray diffraction (XRD) spectra, (d) thermal gravity (TG) curves and (e) N2 adsorption/desorption isotherms of Fe3O4@SiO2@UiO-66-NH2
图3 溶液pH值对目标防腐剂(200 μg/L)萃取率的影响(n=3)
Fig. 3 Effect of pH values of solution on the extraction efficiencies of the target preservatives (200 μg/L) (n=3) Conditions: sample volume, 10 mL; extraction time, 20 min; desorption solvent, methanol (MeOH)-10 mmol/L NaOH (50:50, v/v); desorption time, 20 min; desorption volume, 0.5 mL.
图4 不同解吸溶液对目标防腐剂(200 μg/L)萃取率的影响(n=3)
Fig. 4 Effect of the different desorption solutions on the extraction efficiencies of the target preservatives (200 μg/L) (n=3) Conditions: sample volume, 10 mL; pH value of solution, 3.5; extraction time, 20 min; desorption time, 15 min; desorption volume, 0.5 mL.
图5 不同体积分数的甲醇对目标防腐剂(200 μg/L)萃取率的影响
Fig. 5 Effect of the different volume fractions of MeOH on the extraction efficiencies of the target preservatives (200 μg/L) (n=3) Conditions: sample volume, 10 mL; pH value of solution, pH=3.5; extraction time, 20 min; desorption time, 15 min; desorption volume, 0.5 mL.
图6 解吸体积对(a)萃取率和(b)富集倍数的影响(n=3)
Fig. 6 Effect of desorption volumes on the (a) extraction efficiencies and (b) enrichment factors (n=3) Conditions: sample volume, 25 mL; pH value of solution, pH 3.5; extraction time, 10 min; desorption solvent, MeOH-10 mmol/L NaOH (50/50, v/v); desorption time, 20 min.
Analyte | Linear range/(μg/L) | r | LOD/(μg/L) | LOQ/(μg/L) | RSDs (n=7)/% | EF | |
Intra-day | Inter-day | ||||||
BA | 2-2000 | 0.9998 | 0.51 | 1.60 | 3.8 | 3.3 | 40.2 |
SA | 2-1000 | 0.9976 | 0.65 | 2.28 | 5.5 | 7.4 | 19.1 |
PP | 10-1000 | 0.9982 | 1.89 | 5.35 | 3.5 | 7.8 | 6.3 |
BP | 5-1000 | 0.9961 | 1.29 | 4.02 | 2.1 | 6.7 | 15.9 |
表1 4种防腐剂的线性范围、相关系数、检出限、定量限、相对标准偏差和富集倍数
Table 1 Linear ranges, correlation coefficients (r), LODs, LOQs, RSDs and enrichment factors (EFs) of the four preservatives
Analyte | Linear range/(μg/L) | r | LOD/(μg/L) | LOQ/(μg/L) | RSDs (n=7)/% | EF | |
Intra-day | Inter-day | ||||||
BA | 2-2000 | 0.9998 | 0.51 | 1.60 | 3.8 | 3.3 | 40.2 |
SA | 2-1000 | 0.9976 | 0.65 | 2.28 | 5.5 | 7.4 | 19.1 |
PP | 10-1000 | 0.9982 | 1.89 | 5.35 | 3.5 | 7.8 | 6.3 |
BP | 5-1000 | 0.9961 | 1.29 | 4.02 | 2.1 | 6.7 | 15.9 |
Method | Analytes | Samples | Extraction time/min | LOD/ (μg/L) | Recovery/ % | Ref. |
DLLME: dispersive liquid liquid microextraction; CLC: capillary liquid chromatography; HKUST-1: a kind of MOFs materials; d- μ SPE: dispersive micro-solid-phase extraction; CME: capillary microextraction; SCSE: stir cake sorptive extraction; PDMS: polydimethylsiloxane; SBSE: stir bar sorptive extraction; MSPE: magnetic solid phase extraction. | ||||||
DLLME-CLC-MS | MP, EP, PP, BP | human urine, serum | 20 | 7-11 | 95.2-107 | [ |
HKUST-1-d-μSPE-HPLC-UV | MP, EP, PP, BP | cosmetic creams, human urine | 5 | 0.1-0.6 | 63.7-121 | [ |
Monolith-CME-HPLC-UV | BA, SA | soft drinks | 5 | 0.9-1.2 | 84.4-106 | [ |
Monolith-SCSE-HPLC-UV | BA, SA | juices, soft drinks | 180 | 0.16-1.03 | 96.1-104 | [ |
PDMS-SPE-GC-FID | BA, SA, MP, EP, PP | soft drinks, yogurts, sauces | 45 | 2-200 | 92-106 | [ |
Dual phase-dual SBSE-HPLC-UV | BA, SA, MP, EP, PP, BP | cola, orange juice, herb tea | 40 | 0.6-2.7 | 74.6-119 | [ |
UiO-66-NH2-MSPE-HPLC-UV | BA, SA, PP, BP | beverages, instant noodles | 10 | 0.51-1.89 | 59.2-109 | this work |
表2 本方法与其他方法的比较
Table 2 Comparison of the proposed method with other methods
Method | Analytes | Samples | Extraction time/min | LOD/ (μg/L) | Recovery/ % | Ref. |
DLLME: dispersive liquid liquid microextraction; CLC: capillary liquid chromatography; HKUST-1: a kind of MOFs materials; d- μ SPE: dispersive micro-solid-phase extraction; CME: capillary microextraction; SCSE: stir cake sorptive extraction; PDMS: polydimethylsiloxane; SBSE: stir bar sorptive extraction; MSPE: magnetic solid phase extraction. | ||||||
DLLME-CLC-MS | MP, EP, PP, BP | human urine, serum | 20 | 7-11 | 95.2-107 | [ |
HKUST-1-d-μSPE-HPLC-UV | MP, EP, PP, BP | cosmetic creams, human urine | 5 | 0.1-0.6 | 63.7-121 | [ |
Monolith-CME-HPLC-UV | BA, SA | soft drinks | 5 | 0.9-1.2 | 84.4-106 | [ |
Monolith-SCSE-HPLC-UV | BA, SA | juices, soft drinks | 180 | 0.16-1.03 | 96.1-104 | [ |
PDMS-SPE-GC-FID | BA, SA, MP, EP, PP | soft drinks, yogurts, sauces | 45 | 2-200 | 92-106 | [ |
Dual phase-dual SBSE-HPLC-UV | BA, SA, MP, EP, PP, BP | cola, orange juice, herb tea | 40 | 0.6-2.7 | 74.6-119 | [ |
UiO-66-NH2-MSPE-HPLC-UV | BA, SA, PP, BP | beverages, instant noodles | 10 | 0.51-1.89 | 59.2-109 | this work |
Compound | Added/ (μg/L) | Soda water | Vitamin beverage | Instant noodles | |||||
Found/ (μg/L) | Recovery/ % | Found/ (μg/L) | Recovery/ % | Found/ (μg/L) | Recovery/ % | ||||
ND: not detected; -: no data. | |||||||||
BA | 0 | ND | - | ND | - | ND | - | ||
5.00 | 4.11±0.3 | 82.3 | 3.67±0.2 | 73.4 | 4.68±0.2 | 93.6 | |||
25.0 | 24.9±1.2 | 99.6 | 20.3±1.4 | 81.2 | 24.2±1.0 | 96.6 | |||
50.0 | 47.9±1.7 | 95.7 | 44.7±2.2 | 89.4 | 51.3±2.1 | 103 | |||
SA | 0 | ND | - | ND | - | ND | - | ||
5.00 | 4.57±0.2 | 91.5 | 3.61±0.4 | 72.2 | 4.3±0.2 | 85.9 | |||
25.0 | 27.3±0.9 | 109 | 20.0±1.3 | 80.1 | 23.6±1.5 | 94.3 | |||
50.0 | 53.5±1.9 | 107 | 42.9±1.7 | 85.8 | 46.9±1.6 | 93.9 | |||
PP | 0 | ND | - | ND | - | ND | - | ||
10.0 | 7.46±0.8 | 74.6 | 7.55±0.5 | 75.5 | 8.01±0.2 | 80.1 | |||
50.0 | 39.7±1.5 | 79.3 | 37.5±1.2 | 74.9 | 43.2±2.2 | 86.4 | |||
100 | 84.6±3.9 | 84.6 | 80.2±2.3 | 80.2 | 83.5±4.1 | 83.5 | |||
BP | 0 | ND | - | ND | - | ND | - | ||
10.0 | 8.79±0.4 | 87.9 | 8.25±0.6 | 82.5 | 9.78±0.4 | 97.8 | |||
50.0 | 48.2±1.0 | 96.5 | 43.7±1.5 | 87.3 | 47.2±1.6 | 94.3 | |||
100 | 89.1±4.2 | 89.1 | 94.2±6.4 | 94.2 | 89.2±5.3 | 89.2 |
表3 饮料样品和方便面中目标防腐剂的分析结果(n=3)
Table 3 Analytical results of the four preservatives in the beverage and instant noodles samples (n=3)
Compound | Added/ (μg/L) | Soda water | Vitamin beverage | Instant noodles | |||||
Found/ (μg/L) | Recovery/ % | Found/ (μg/L) | Recovery/ % | Found/ (μg/L) | Recovery/ % | ||||
ND: not detected; -: no data. | |||||||||
BA | 0 | ND | - | ND | - | ND | - | ||
5.00 | 4.11±0.3 | 82.3 | 3.67±0.2 | 73.4 | 4.68±0.2 | 93.6 | |||
25.0 | 24.9±1.2 | 99.6 | 20.3±1.4 | 81.2 | 24.2±1.0 | 96.6 | |||
50.0 | 47.9±1.7 | 95.7 | 44.7±2.2 | 89.4 | 51.3±2.1 | 103 | |||
SA | 0 | ND | - | ND | - | ND | - | ||
5.00 | 4.57±0.2 | 91.5 | 3.61±0.4 | 72.2 | 4.3±0.2 | 85.9 | |||
25.0 | 27.3±0.9 | 109 | 20.0±1.3 | 80.1 | 23.6±1.5 | 94.3 | |||
50.0 | 53.5±1.9 | 107 | 42.9±1.7 | 85.8 | 46.9±1.6 | 93.9 | |||
PP | 0 | ND | - | ND | - | ND | - | ||
10.0 | 7.46±0.8 | 74.6 | 7.55±0.5 | 75.5 | 8.01±0.2 | 80.1 | |||
50.0 | 39.7±1.5 | 79.3 | 37.5±1.2 | 74.9 | 43.2±2.2 | 86.4 | |||
100 | 84.6±3.9 | 84.6 | 80.2±2.3 | 80.2 | 83.5±4.1 | 83.5 | |||
BP | 0 | ND | - | ND | - | ND | - | ||
10.0 | 8.79±0.4 | 87.9 | 8.25±0.6 | 82.5 | 9.78±0.4 | 97.8 | |||
50.0 | 48.2±1.0 | 96.5 | 43.7±1.5 | 87.3 | 47.2±1.6 | 94.3 | |||
100 | 89.1±4.2 | 89.1 | 94.2±6.4 | 94.2 | 89.2±5.3 | 89.2 |
图7 苏打水、维生素饮料和方便面中4种防腐剂的色谱图
Fig. 7 Chromatograms of the four preservatives in the soda, vitamin beverage and instant noodles samples a. original sample obtained by direct injection; b. original sample obtained by MSPE; c. spiked sample obtained by MSPE (25 μg/L for BA and SA, 50 μg/L for PP and BP).
|
[1] | 赵芮, 黄晴雯, 余智颖, 韩铮, 范楷, 赵志辉, 聂冬霞. QuEChERS-超高效液相色谱-串联质谱法同时测定水果中36种真菌毒素[J]. 色谱, 2023, 41(9): 760-770. |
[2] | 刘宇, 邢家溧, 沈坚, 毕晓丽, 毛玲燕, 徐晓蓉, 张书芬, 娄永江, 吴希, 穆应花. 高效液相色谱-蒸发光散射检测法同时测定固态食品中6种稀有糖[J]. 色谱, 2023, 41(9): 781-788. |
[3] | 岳超, 赵超群, 毛思浩, 王展华, 施贝, 徐欣丰, 梁晶晶. 通过式固相萃取净化-超高效液相色谱-串联质谱法测定液体乳中10种氨基甲酸酯类农药残留[J]. 色谱, 2023, 41(9): 807-813. |
[4] | 史洪飞, 徐伯芃, 徐成鑫, 周修齐, 许宏福. 溶剂萃取-高效液相色谱-四极杆飞行时间质谱法快速提取检测干燥恰特草中5种生物碱成分[J]. 色谱, 2023, 41(9): 771-780. |
[5] | 钱正明, 吴梦奇, 谭国英, 金李玲, 李宁, 谢菊英. 高效液相色谱紫外等吸收波长法快速测定秦皮中秦皮甲素和秦皮乙素[J]. 色谱, 2023, 41(8): 690-697. |
[6] | 曹沁玲, 赵小丹, 沈国滨, 汪竹琴, 章弘扬, 张敏, 胡坪. 基于超高效液相色谱-电雾式检测的槐糖脂指纹图谱[J]. 色谱, 2023, 41(8): 722-729. |
[7] | 孟二琼, 念琪循, 李峰, 张秋萍, 许茜, 王春民. 磺酸化磁性氮化碳固相萃取-超高液相色谱-串联质谱筛检淡水鱼中孔雀石绿和隐色孔雀石绿[J]. 色谱, 2023, 41(8): 673-682. |
[8] | 吴萍萍, 林仁义, 黄丽英. 三相中空纤维液相微萃取-高效液相色谱法测定铁皮石斛和金线莲中3种植物生长调节剂[J]. 色谱, 2023, 41(8): 683-689. |
[9] | 马超, 倪洪星, 戚羽霖. 超高效液相色谱-傅里叶变换离子回旋共振质谱法解析溶解性有机质的化学多样性[J]. 色谱, 2023, 41(8): 662-672. |
[10] | 王秋旭, 冯启言, 朱雪强. 加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱法测定沉积物中双酚类化合物[J]. 色谱, 2023, 41(7): 582-590. |
[11] | 杨哲, 吕建霞, 吴一荻, 蒋力维, 李冬梅. 超高效液相色谱法同时测定电子烟油中的5种吲哚/吲唑酰胺类合成大麻素[J]. 色谱, 2023, 41(7): 602-609. |
[12] | 夏宝林, 汪仕韬, 殷晶晶, 张维益, 杨娜, 刘强, 吴海晶. 自动上样固相萃取-超高效液相色谱-串联质谱法同时测定水中9类43种抗菌药物残留[J]. 色谱, 2023, 41(7): 591-601. |
[13] | 陈东洋, 张昊, 张磊, 王一红, 王小丹, 冯家力, 梁静, 钟旋. 固相萃取-超高效液相色谱-串联质谱法测定发酵食品中的曲酸[J]. 色谱, 2023, 41(7): 632-639. |
[14] | 王园媛, 李璐璐, 吕佳, 陈永艳, 张岚. 固相萃取-超高效液相色谱-三重四极杆质谱法测定饮用水中13种卤代苯醌类消毒副产物[J]. 色谱, 2023, 41(6): 482-489. |
[15] | 陈金男, 王蒙, 董泽民, 叶金, 李丽, 吴宇, 刘洪美, 王松雪. 高通量自动化免疫磁珠净化-超高效液相色谱法检测饲料中4种黄曲霉毒素[J]. 色谱, 2023, 41(6): 504-512. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||