色谱 ›› 2021, Vol. 39 ›› Issue (6): 567-577.DOI: 10.3724/SP.J.1123.2020.07014
收稿日期:
2020-07-13
出版日期:
2021-06-08
发布日期:
2021-04-13
通讯作者:
潘建章,方群
作者简介:
E-mail: kelvonpan@zju.edu.cn(潘建章).基金资助:
LIANG Yixiao, PAN Jianzhang*(), FANG Qun*(
)
Received:
2020-07-13
Online:
2021-06-08
Published:
2021-04-13
Contact:
PAN Jianzhang,FANG Qun
Supported by:
摘要:
药物筛选是新药研发的关键步骤,创新药物的发现需要采用适当的药物作用靶点对大量化合物样品进行筛选。高通量筛选系统能够实现数千个反应同时测试和分析,大大提高了药物筛选的实验规模和效率。其中基于细胞水平的高通量药物筛选系统因为更加接近人体生理条件,成为主要的筛选模式。而目前发展成熟的高通量细胞筛选系统主要基于多孔板,存在细胞培养条件单一、耗时费力、试剂消耗量大等问题,且较难实现复杂的组合药物筛选。微流控技术作为一种在微米尺度通道中操纵和控制微流体的技术,具有微量、高效、高通量和自动化的优点,能较好地克服多孔板筛选系统的不足,为构建细胞高通量药物筛选系统提供了一种高效、可靠的技术手段。微流控系统在细胞培养材料、芯片结构设计和流体控制方面均可灵活变化,能更好地实现对细胞生长微环境的调控和模拟。文章综述了基于微流控技术的细胞水平高通量药物筛选系统的研究进展,按照不同的微流体操控模式,对基于灌注流、液滴和微阵列的3种类型的微流控细胞筛选系统进行了分类介绍,并分别总结了它们的优缺点,最后展望了微流控细胞水平高通量药物筛选系统的发展前景,提出了该领域目前存在的问题以及解决问题的方向。
中图分类号:
梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577.
LIANG Yixiao, PAN Jianzhang, FANG Qun. Research advances of high-throughput cell-based drug screening systems based on microfluidic technique[J]. Chinese Journal of Chromatography, 2021, 39(6): 567-577.
图 1 基于灌注流模式的微流控细胞筛选系统
Fig. 1 Cell-based microfluidic screening systems based on perfusion flow mode a. schematic diagram of the pneumatically-actuated elastomeric valves based microfluidic platform for cell cytotoxicity screening[17]; b. schematic diagram of the microfluidic system based on bridge-and-underpass architecture[27]; c. schematic diagram of the integrated microfluidic device with concentration gradient generators[28]; d. schematic diagram of the 3D printed concentration gradient generator[32].
图 2 基于3D细胞培养的灌注流模式微流控细胞筛选系统
Fig. 2 3D cell culture-based microfluidic screening systems based on the perfusion flow mode a. schematic diagram of cell chambers with two sizes used for the formation of cell spheres[38]; b. schematic diagram of the 3D cell perfusion culture chip with an array of micropillars in the microfluidic channel[39]; c. schematic diagram of the integrated microchip with interdigitated microelectrodes[20].
图 3 基于灌注流模式的器官芯片系统
Fig. 3 Organ-on-a-chip systems based on perfusion flow mode a. schematic diagram of the lung-on-a-chip system[42]; b. schematic diagram of the organ-on-a-chip system for studying tumor-induced angiogenesis[49]; c. schematic diagram of the organ-on-a-chip system integrating four types of organ cells[50].
图 4 基于液滴模式的微流控细胞筛选系统
Fig. 4 Cell-based microfluidic screening systems based on droplet mode a. workflow of the droplet-based drug screening platform[54]; b. schematic diagram of the microwell array for randomly pairing droplets[55]; c. schematic diagram of the microchannel chamber for trapping droplets[56].
图 5 基于3D细胞培养的液滴模式微流控细胞筛选系统
Fig. 5 Droplet mode microfluidic systems based on 3D cell culture a. schematic diagram of the microfluidic flow-focusing device for generating mixed hydrogel droplets[57]; b. formation of coculture tumor spheroid with stromal fibroblast cells[58]; c. illustration of cell culture and drug testing process in the sidewall-attached droplet array: Fig. c1. cell seeding; Fig. c2. formation of cell spheroid in a droplet; Fig. c3. addition of the drug; Fig. c4. addition of fluorescence dye to stain the cell spheroid[62].
图 6 基于微阵列模式的微流控细胞筛选系统
Fig. 6 Cell-based microfluidic screening systems based on microarray mode a. schematic diagram of the DataChip platform for testing of compound toxicity[63]; b. schematic diagram of the cell-seeded microwell and chemical-laden post aligned and sandwiched together[68]; c. schematic diagram of the liver-immune coculture array chip[71]; d. formation of the cell droplet array based on superhydrophilic-superhydrophobic micropattern[75]; e. illustration of the drug combination screening based on sequential operation droplet array (SODA) system[77].
[1] |
Bergese P, Cretich M, Oldani C, et al. Curr Med Chem, 2008,15(17):1706
DOI URL PMID |
[2] | Harrison D J, Manz A, Fan Z, et al. Anal Chem, 1992,64(17):1926 |
[3] | Fan Y, Wang H, Liu S, et al. J Food Safety, 2018,38(6):12548 |
[4] | Bandaru P, Chu D, Sun W, et al. Small, 2019,15(15):1900300 |
[5] |
Gao R, Cheng Z, deMello A J, et al. Lab Chip, 2016,16(6):1022
DOI URL PMID |
[6] |
Schröder H, Grösche M, Adler M, et al. Biochem Biophys Res Commun, 2017,488(2):311
DOI URL PMID |
[7] | Kim S C, Jalal U M, Im S B, et al. Sens Actuators B: Chem, 2017,239:52 |
[8] |
Lee J M, Park D Y, Yang L, et al. Sci Rep, 2018,8(1):17145
DOI URL PMID |
[9] |
Uhl C G, Liu Y L. Lab Chip, 2019,19(8):1458
URL PMID |
[10] |
Yan X J, Zhou L, Wu Z Z, et al. Biomaterials, 2018,198:167
DOI URL PMID |
[11] |
Du G S, Fang Q, den Toonder J M J. Anal Chim Acta, 2016,903:36
DOI URL PMID |
[12] |
Sethu P, Anahtar M, Moldawer L L, et al. Anal Chem, 2004,76(21):6247
DOI URL PMID |
[13] |
Sung J H, Shuler M L. Lab Chip, 2009,9(10):1385
URL PMID |
[14] |
Wang Y, Lin W Y, Liu K, et al. Lab Chip, 2009,9(16):2281
URL PMID |
[15] |
Zhu X, Yi C L, Chueh B, et al. Analyst, 2004,129(11):1026
DOI URL PMID |
[16] | Nie J, Gao Q, Qiu J J, et al. Biofabrication, 2018,10(3):35001 |
[17] |
Wang Z, Kim M, Marquez M, et al. Lab Chip, 2007,7(6):740
DOI URL PMID |
[18] | Kwapiszewska K, Michalczuk A, Rybka M, et al. Lab Chip, 2014,14(12):2096 |
[19] |
Jia X, Dong S, Wang E. Biosens Bioelectron, 2016,76:80
DOI URL PMID |
[20] | Pandya H J, Dhingra K, Prabhakar D, et al. Biosens Bioelectron, 2017,94:632 |
[21] |
Flampouri E, Imar S, OConnell K, et al. ACS Sens, 2019,4(3):660
URL PMID |
[22] |
Wu Q, Wei X, Pan Y, et al. Biomed Microdevices, 2018,20(4):82
DOI URL PMID |
[23] |
Wu J, Wang S, Chen Q, et al. Anal Chim Acta, 2015,892:132
DOI URL PMID |
[24] |
Chen F, Lin L, Zhang J, et al. Anal Chem, 2016,88(8):4354
DOI URL PMID |
[25] | Zhang Z, Chen Y, Urs S, et al. Small, 2018,14(42):1703617 |
[26] |
Liu W, Sun M, Han K, et al. Anal Chem, 2019,91(21):13601
URL PMID |
[27] |
Park E S, Brown A C, Difeo M A, et al. Lab Chip, 2010,10(5):571
URL PMID |
[28] |
Ye N N, Qin J H, Shi W W, et al. Lab Chip, 2007,7(12):1696
DOI URL PMID |
[29] | An D, Kim K, Kim J. Biomol Ther, 2014,22(4):355 |
[30] |
Gong H, Woolley A T, Nordin G P. Lab Chip, 2018,18(4):639
URL PMID |
[31] |
Li F, Macdonald N P, Guijt R M, et al. Lab Chip, 2019,19(1):35
DOI URL PMID |
[32] | Chen X, Chen H, Wu D, et al. Sens Actuators B: Chem, 2018,276:507 |
[33] | Li X, Zhang J M, Yi X, et al. Adv Sci, 2018,6(3):1800730 |
[34] |
Bielecka Z F, Maliszewska-Olejniczak K, Safir I J, et al. Biol Rev, 2017,92(3):1505
URL PMID |
[35] |
Yamada K M, Cukierman E. Cell, 2007,130(4):601
DOI URL PMID |
[36] |
Pampaloni F, Reynaud G E, Stelzer E H. Nat Rev Mol Cell Biol, 2007,8(10):839
DOI URL PMID |
[37] |
Taubenberger A V, Bray L J, Haller B, et al. Acta Biomater, 2016,36:73
URL PMID |
[38] |
Patra B, Peng C, Liao W, et al. Sci Rep, 2016,6:21061
DOI URL PMID |
[39] |
Toh Y, Lim T C, Tai D, et al. Lab Chip, 2009,9(14):2026
URL PMID |
[40] |
Mulholland T, McAllister M, Patek S, et al. Sci Rep, 2018,8:14672
DOI URL PMID |
[41] |
Pan Y X, Hua N, Wei X W, et al. Biosens Bioelectron, 2019,130:344
DOI URL PMID |
[42] |
Huh D, Matthews B D, Mammoto A, et al. Science, 2010,328(5986):1662
URL PMID |
[43] |
Huh D, Leslie D C, Matthews B D, et al. Sci Transl Med, 2012, 4(159):159ra147
DOI URL PMID |
[44] |
Hassell B A, Goyal G, Lee E, et al. Cell Rep, 2017,21(2):508
DOI URL PMID |
[45] |
Wang L, Tao T, Su W, et al. Lab Chip, 2017,17(10):1749
DOI URL PMID |
[46] |
Zhou M, Zhang X, Wen X, et al. Sci Rep, 2016,6:31771
URL PMID |
[47] |
Xu H, Li Z, Yu Y, et al. Sci Rep, 2016,6:36670
URL PMID |
[48] |
Jie M, Mao S, Liu H, et al. Analyst, 2017,142(19):3629
DOI URL PMID |
[49] | Liu L, Xie Z, Zhang W, et al. RSC Adv, 2016,6(42):35248 |
[50] | Oleaga C, Bernabini C, Smith A S T, et al. Sci Rep, 2016,6:20030 |
[51] |
Thorsen T, Roberts R W, Arnold F H, et al. Phys Rev Lett, 2001,86(18):4163
DOI URL PMID |
[52] |
Kaminski T S, Garstecki P. Chem Soc Rev, 2017,46(20):6210
DOI URL PMID |
[53] |
Clausell-Tormos J, Lieber D, Baret J C, et al. Chem Biol, 2008,15(5):427
DOI URL PMID |
[54] |
Brouzes E, Medkova M, Savenelli N, et al. Proc Natl Acad Sci U S A, 2009,106(34):14195
DOI URL PMID |
[55] |
Kulesa A, Kehe J, Hurtado J E, et al. Proc Natl Acad Sci U S A, 2018,115(26):6685
URL PMID |
[56] |
Wong A H, Li H, Jia Y, et al. Sci Rep, 2017,7:9109
DOI URL PMID |
[57] |
Wang Y, Wang J. Analyst, 2014,139(10):2449
DOI URL PMID |
[58] |
Sun Q, Tan S H, Chen Q, et al. ACS Biomater Sci Eng, 2018,4(12):4425
DOI URL |
[59] |
Sart S, Tomasi R F X, Amselem G, et al. Nat Commun, 2017,8:469
DOI URL PMID |
[60] | Yang W, Cai S, Yuan Z, et al. Mater Design, 2019,183:108182 |
[61] |
Sabhachandani P, Motwani V, Cohen N, et al. Lab Chip, 2016,16(3):497
URL PMID |
[62] |
Zhao S P, Ma Y, Lou Q, et al. Anal Chem, 2017,89(19):10153
DOI URL PMID |
[63] |
Lee M, Kumar R A, Sukumaran S M, et al. Proc Natl Acad Sci U S A, 2008,105(1):59
URL PMID |
[64] |
Li J, Tan W, Xiao W, et al. Anal Chem, 2018,90(23):13969
URL PMID |
[65] |
Zhang P F, Zhang J X, Bian S T, et al. Lab Chip, 2016,16(16):2996
URL PMID |
[66] |
Yu K, Kang S, Hong S, et al. Arch Toxicol, 2018,92(8):2501
DOI URL PMID |
[67] |
Yu K, Nadanaciva S, Rana P, et al. Arch Toxicol, 2018,92(3):1295
DOI URL PMID |
[68] |
Wu J, Wheeldon I, Guo Y, et al. Biomaterials, 2011,32(3):841
URL PMID |
[69] |
Eun Chung S, Kim J, Yoon Oh D, et al. Nat Commun, 2014,5(1):3468
DOI URL |
[70] |
Li X, Zhang X, Zhao S, et al. Lab Chip, 2014,14(3):471
URL PMID |
[71] |
Chong L H, Li H, Wetzel I, et al. Lab Chip, 2018,18(21):3239
DOI URL PMID |
[72] |
Ueda E, Levkin P A. Adv Mater, 2013,25(9):1234
DOI URL PMID |
[73] |
Geyer F L, Ueda E, Liebel U, et al. Angew Chem Int Ed, 2011,50(36):8424
DOI URL |
[74] |
Wu H, Chen X, Gao X, et al. Anal Chem, 2018,90(7):4303
URL PMID |
[75] |
Popova A A, Schillo S M, Demir K, et al. Adv Mater, 2015,27(35):5217
DOI URL PMID |
[76] |
Popova A A, Demir K, Hartanto T G, et al. RSC Adv, 2016,6(44):38263
DOI URL |
[77] |
Du G S, Pan J Z, Zhao S P, et al. Anal Chem, 2013,85(14):6740
DOI URL PMID |
[1] | 李婷, 常蒙蒙, 石先哲, 许国旺. 分子印迹聚合物在极性农药残留检测中的应用进展[J]. 色谱, 2021, 39(9): 930-940. |
[2] | 张文敏, 李青青, 方敏, 高佳, 陈宗保, 张兰. 金属有机骨架衍生材料在样品前处理中的应用研究进展[J]. 色谱, 2021, 39(9): 941-949. |
[3] | 周丽慧, 肖小华, 李攻科. 干果类食品的样品前处理与分析检测方法研究进展[J]. 色谱, 2021, 39(9): 958-967. |
[4] | 陈雯雯, 甘忠桥, 秦建华. 微流控技术在外泌体分离分析中的研究进展[J]. 色谱, 2021, 39(9): 968-980. |
[5] | 贾璞, 边阳阳, 白亚军, 孟雪, 高朔漠, 赵晔, 蔡宇杰, 郑晓晖. 色谱在药物-机体复杂巨系统研究中的应用进展[J]. 色谱, 2021, 39(9): 950-957. |
[6] | 高文杰, 白玉, 刘虎威. 功能化磁性纳米材料在糖蛋白及糖肽富集中的研究进展[J]. 色谱, 2021, 39(9): 981-988. |
[7] | 柴佩君, 宋志花, 刘万卉, 薛俊萍, 王硕, 刘金秋, 李金花. 碳点在抗生素分析检测中的应用[J]. 色谱, 2021, 39(8): 816-826. |
[8] | 张昱, 齐骥, 刘丰, 王宁, 孙西艳, 崔荣, 于佳洛, 叶嘉明, 刘萍, 李博伟, 陈令新. 微流控纸芯片在环境分析检测中的应用[J]. 色谱, 2021, 39(8): 802-815. |
[9] | 朱树芸, 赵先恩, 刘虎威. 醛类标志物的化学衍生化色谱-质谱分析方法进展[J]. 色谱, 2021, 39(8): 845-854. |
[10] | 姜皓文, 李健, 谭志强, 郭瑛瑛, 刘艳伟, 胡立刚, 阴永光, 蔡勇, 江桂斌. 无固定相分离-电感耦合等离子体质谱法在环境中痕量金属纳米颗粒分析中的应用[J]. 色谱, 2021, 39(8): 855-869. |
[11] | 张一清, 郭珊珊, 孙倩. 冷冻干燥技术在环境水样有机新污染物前处理中的应用进展[J]. 色谱, 2021, 39(8): 827-834. |
[12] | 邢仕歌, 贺木易, 刘通, 雍炜, 张峰. 固相萃取材料在金属离子前处理应用中的研究进展[J]. 色谱, 2021, 39(5): 455-462. |
[13] | 廖颖敏, 黄晓佳, 王卓卓, 甘蕊. 基于碳基磁性材料的磁固相萃取技术在食品分析应用中的研究进展[J]. 色谱, 2021, 39(4): 368-375. |
[14] | 温翰荣, 朱珏, 张博. 芯片液相色谱技术进展[J]. 色谱, 2021, 39(4): 357-367. |
[15] | 魏佳楠, 秦墨林, 杨俊超, 杨柳. 填充吸附剂微萃取技术及其在微小体积样品萃取应用中的研究进展[J]. 色谱, 2021, 39(3): 219-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||