色谱 ›› 2021, Vol. 39 ›› Issue (7): 758-763.DOI: 10.3724/SP.J.1123.2020.08026

• 技术与应用 • 上一篇    下一篇

吹扫捕集-气相色谱-三重四极杆质谱法同时测定饮用出厂水中6种卤乙腈

詹未, 韩志宇*(), 李勇, 刘非, 张永   

  1. 北京市疾病预防控制中心, 北京市预防医学研究中心, 北京 100013
  • 收稿日期:2020-09-11 出版日期:2021-07-08 发布日期:2021-06-02
  • 通讯作者: 韩志宇
  • 作者简介:*Tel:(010)64407148,E-mail:13910683624@139.com.
  • 基金资助:
    北京市疾病预防控制中心、北京市预防医学研究中心科研培育专项(2020-BJYJ-03)

Simultaneous determination of six haloacetonitriles in finished water for drinking by purge and trap-gas chromatography-triple quadrupole mass spectrometry

ZHAN Wei, HAN Zhiyu*(), LI Yong, LIU Fei, ZHANG Yong   

  1. Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
  • Received:2020-09-11 Online:2021-07-08 Published:2021-06-02
  • Contact: HAN Zhiyu
  • Supported by:
    Cultivation Fund of Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine(2020-BJYJ-03)

摘要:

目前卤乙腈作为我国非受监管的消毒副产物广泛存在于饮用出厂水中,可产生多种毒性,缺乏相关标准检测依据。研究建立了吹扫捕集-气相色谱-三重四极杆质谱同时测定饮用出厂水中氯乙腈、二氯乙腈、三氯乙腈、溴乙腈、溴氯乙腈、二溴乙腈的分析方法。吹扫捕集技术应用于卤乙腈的测定,实现了样品经采集后全程自动测定,有害试剂零消耗。同时吹扫捕集法相比固相微萃取法,样品制备的速度更快,成本更低。实验考察了样品6 h内目标组分的稳定性;比较了7#(2,6-二苯基对苯醚)、10#(2,6-二苯基对苯醚/硅胶/碳分子筛)、11#(疏水活性炭)、12#(疏水活性炭)捕集阱对目标组分响应的影响;考察了4种型号色谱柱(VF-5、Rxi-624、DB-VRX、HP-INNOWAX)对色谱峰形的影响。实验条件经优化,确定了吹扫捕集采用10#捕集阱,将25 mL水样于35 ℃吹扫11 min,于190 ℃解析1 min。气相色谱分流进样,分流比1∶10,使用Rxi-624Sil MS色谱柱(60 m×0.25 mm×1.40 μm)程序升温分离,线速度30 cm/s,在MRM模式下检测,外标法定量。结果表明,6种卤乙腈的基质效应为0.85~1.09,在各自范围内线性良好,r>0.9991,方法检出限为0.8~120.0 ng/L,定量限为1.5~300.0 ng/L, 3水平平均加标回收率为84.2%~106%,相对标准偏差(RSD)为1.81%~10.7%。对38份出厂水样品进行测定,卤乙腈总检出率为92.1%,含量为0.0101~1.28 μg/L。该方法高效、灵敏、环保,为针对卤乙腈类新兴消毒副产物开展监测及健康风险评估提供了优质的技术选择。

关键词: 气相色谱-三重四极杆质谱, 吹扫捕集, 消毒副产物, 卤乙腈, 出厂水

Abstract:

Haloacetonitriles (HANs) are widely used in finished water as unregulated disinfection by-products. HANs may pose much threat to human health, and there is no relevant standard examination method for these compounds. A method was established for the simultaneous determination of six HANs (chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromoacetonitrile (BAN), bromochloroacetonitrile (BCAN), and dibromoacetonitrile (DBAN)) in finished water by using purge and trap-gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The purge and trap technology helps realize automatic determination of samples after collection, without using any harmful reagent. The cost and analytical efficiency of this method were superior to those of solid phase microextraction (SPME). Considering the instability of HANs, the analysis must be carried out as soon as possible after sampling, in order to avoid significant changes in their concentration during storage. In particular, the use of an appropriate quenching agent was critical to sample collection. In this study, ascorbic acid was chosen as the quenching agent. The stabilities of the spiked samples at the levels of 0.1 (TCAN), 0.2 (CAN), 1.0 (DCAN), 1.0 (BAN), 1.0 (BCAN), 4.0 (DBAN) μg/L were tested. The effect of sample storage time (0, 0.5, 1, 2, 3, 4, and 6 h) on the responses of the target component was evaluated. The stability results showed that within 6 h, the relative standard deviations of the responses for the six HANs ranged from 2.32% to 6.98%. To validate the method, first, different traps, viz. 7# (Tenax), 10# (Teanx/silica gel/cms), 11# (VOCARB), and 12# (BTEXTRAP) were optimized. Second, various chromatographic columns (VF-5, Rxi-624, DB-VRX, and HP-INNOWAX) were compared to investigate their influence on the peak shape. Under the optimal detection conditions, the six HANs in finished water were extracted with the 10# trap. The volume of the water sample was used 25 mL, with purging at 35 ℃ for 11 min, and desorbed at 190 ℃ for 1 min. Chromatographic separation was performed on a Rxi-624Sil MS chromatographic column (60 m×0.25 mm×1.40 μm). Gas chromatographic conditions were obtained under the following conditions: split ratio, 1∶10; linear velocity, 30 cm/s. The triple quadrupole mass spectrometer was operated in the electron impact (EI) mode. The target compounds were detected in the multiple reaction monitoring (MRM) mode. Quantitation was carried out using the external standard method. The results showed that the matrix effects of the six HANs ranged from 0.85 to 1.09. Good linearities were obtained in the range of the standard curves. The correlation coefficients (r) were greater than 0.9991. The limits of detection (LODs, S/N=3) were 0.8-120.0 ng/L. The limits of quantification (LOQs, S/N=10) were 1.5-300.0 ng/L. The average recoveries of the six HANs ranged from 84.2% to 106%, and the RSDs were in the range of 1.81%-10.7%. In August 2020, 38 samples of finished water were tested. All of the six HANs were found in the finished water. The concentrations of the HANs were in the range of 0.0101-1.28 μg/L, and the total detection rate was 92.1%. The detection rates of the individual components followed the order DCAN>BCAN>CAN>TCAN>BAN>DBAN. The developed method is efficient, sensitive, and environmentally friendly. It provides a high-quality technical choice for monitoring and health risk assessment of the emerging disinfection by-products of HANs.

Key words: gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS), purge and trap, disinfection by-products, haloacetonitriles (HANs), finished water

中图分类号: