色谱 ›› 2021, Vol. 39 ›› Issue (8): 816-826.DOI: 10.3724/SP.J.1123.2021.04022
柴佩君1, 宋志花1,*(), 刘万卉1, 薛俊萍1, 王硕3, 刘金秋1, 李金花2,*(
)
收稿日期:
2021-05-09
出版日期:
2021-08-08
发布日期:
2021-06-29
通讯作者:
宋志花,李金花
作者简介:
Tel:(0535)2109133,E-mail: jhli@yic.ac.cn(李金花).基金资助:
CHAI Peijun1, SONG Zhihua1,*(), LIU Wanhui1, XUE Junping1, WANG Shuo3, LIU Jinqiu1, LI Jinhua2,*(
)
Received:
2021-05-09
Online:
2021-08-08
Published:
2021-06-29
Contact:
SONG Zhihua,LI Jinhua
Supported by:
摘要:
抗生素的过度使用对环境造成了极大破坏,对其进行监测控制刻不容缓。常用的分析检测技术,如高效液相色谱(HPLC)、气相色谱(GC)、高效液相色谱-串联质谱(HPLC-MS/MS)等具有高效快速、重现性好、可自动化操作等优点。但对环境样品中抗生素的检测存在样品前处理过程繁琐、检测灵敏度低、实验成本高等问题。结合现有的检测技术发展新型材料,对提高抗生素的检测灵敏度具有重要意义。碳点(CDs)是一种尺寸介于0~10 nm之间的新型纳米材料,具有小尺寸效应、优异的电学和光学性质、良好的生物相容性等优点,已被广泛应用于环境样品中抗生素的检测。该综述对近5年CDs与传感器、色谱分析技术结合检测抗生素的应用进行了总结,并对其发展前景进行了展望。该文总结了CDs与分子印迹传感器、适配体传感器、电化学发光传感器、荧光传感器及电化学传感器相结合,及其在抗生素检测中的应用;对涉及的比率型传感器、阵列传感器等先进分析方法进行了举例评述;对CDs作为色谱固定相分离抗生素进行了阐述。文献表明,CDs结合传感器检测抗生素可有效提高检测灵敏度,但对复杂环境样品中抗生素的检测还面临着构建高选择性传感器、开发新型材料及数据处理等方面的挑战;目前,CDs作为色谱固定相对抗生素的材料分离,仍处于初步研究阶段,分离机理尚不明确,有待进一步深入研究。总之,CDs在环境样品中抗生素的检测方面仍面临一系列问题,随着人们对CDs的深入研究以及各种分析检测技术的不断发展,CDs将会在抗生素等环境污染物的检测中发挥重要作用。
中图分类号:
柴佩君, 宋志花, 刘万卉, 薛俊萍, 王硕, 刘金秋, 李金花. 碳点在抗生素分析检测中的应用[J]. 色谱, 2021, 39(8): 816-826.
CHAI Peijun, SONG Zhihua, LIU Wanhui, XUE Junping, WANG Shuo, LIU Jinqiu, LI Jinhua. Application of carbon dots in analysis and detection of antibiotics[J]. Chinese Journal of Chromatography, 2021, 39(8): 816-826.
图1 (a)碳点的制备和(b)比率传感器的制备及青霉素传感机理示意图[33]
Fig. 1 (a) Synthesis of carbon dots (CDs) and (b) schematic of the preparation of ratiometric sensor and the sensing mechanism of penicillin[33] TEOS: tetraethoxysilane; APTES: 3-aminopropyltriethoxysilane; CTAB: cetyltrimethylammonium bromide; PNG: penicillin.
图2 7种抗生素的两步检测流程图[66]
Fig. 2 Flow chart of two-step detection for seven kinds of antibiotics[66] MTR: metronidazole; DOX: doxycycline; TCY: tetracycline; CTE: chlortetracycline; OXY: oxytetracycline; CHL: chloramphenicol; SDI: sulfadiazine.
图3 抗生素识别原理及结果分析图[76]
Fig. 3 Antibiotic identification principle and result analysis charts[76] a. schematic illustration of antibiotic recognition; b. fluorescence response of these four CDs against eight antibiotics; c. LDA plot with 95% confidence interval. TC: tetracycline; OTC: oxytetracycline; CTC: aureomycin; SPM: spiramycin; ERY: erythromycin; SM: streptomycin; CHL: chloramphenicol; NEO: neomycin.
图4 “交通灯”免疫层析法检测抗生素的原理图[96]
Fig. 4 Schematic diagrams of antibiotic detection by traffic light immunochromatography test[96] a. test strip before the assay; b. assay results for the sample containing STR; c. assay results for the sample containing CAP and OFL. 1. test zone for streptomycin (STR); 2. test zone for chloramphenicol (CAP); 3. test zone for ofloxacin (OFL); 4. STR conjugate antibody; 5. CAP conjugate antibody; 6. OFL conjugate antibody; 7. control line.
[1] |
Du L F, Liu W K. Agron Sustain Dev, 2012,32(2):309
DOI URL |
[2] | Wang L Y, Wang J N, Li J H, et al. Chinese Journal of Chromatography, 2020,38(3):265 |
王莉燕, 王加男, 李金花, 等. 色谱, 2020,38(3):265 | |
[3] |
Zhao C, Zhou Y, de Ridder D J, et al. Chem Eng J, 2014,248:280
DOI URL |
[4] |
Charuaud L, Jarde E, Jaffrezic A, et al. J Hazard Mater, 2019,361:169
DOI |
[5] |
Lida N, Mizukoshi E, Yamashita T, et al. Int J Cancer, 2019,145(10):2701
DOI URL |
[6] | Wong A, Santos A M, Cincotto F H, et al. Talanta, 2020,206:120252 |
[7] |
Qiao M, Ying G G, Singer A C, et al. Environ Int, 2018,110:160
DOI PMID |
[8] |
Ghodsi J, Rafati A A, Shoja Y. Sensor Actuat B-Chem, 2016,224:692
DOI URL |
[9] |
Song J L, Huang M H, Jiang N, et al. J Hazard Mater, 2020,391:122024
DOI URL |
[10] |
Xie X, Wang B, Pang M D, et al. Food Chem, 2018,269:542
DOI URL |
[11] |
Yang S X, Ma S Y, Zhu K L, et al. J Food Compos Anal, 2020,88:103462
DOI URL |
[12] |
Peng J, Kong D Z, Liu L Q, et al. Anal Methods-UK, 2015,7(12):5204
DOI URL |
[13] |
Cardoso A R, Marques A C, Santos L, et al. Biosens Bioelectron, 2019,124:167
DOI |
[14] |
Munawar A, Tahir M A, Shaheen A, et al. J Hazard Mater, 2018,342:96
DOI URL |
[15] |
Yang Q, Peng H L, Li J H, et al. New J Chem, 2017,41(18):10174
DOI URL |
[16] |
Wang M H, Hu M Y, Liu J M, et al. Biosens Bioelectron, 2019,132:8
DOI URL |
[17] |
Hou J, Li H Y, Wang L, et al. Talanta, 2016,146:34
DOI URL |
[18] |
Zhu S J, Song Y B, Zhao X H, et al. Nano Res, 2015,8(2):355
DOI URL |
[19] |
Chen J, Gong Z J, Tang W Y, et al. TrAC-Trends Anal Chem, 2021,134:116135
DOI URL |
[20] |
Wang Z F, Zeng H D, Sun L Y. J Mater Chem C, 2015,3(6):1157
DOI URL |
[21] |
Yuan F L, Wang Z B, Li X H, et al. Adv Mater, 2017,29(3):1604436
DOI URL |
[22] |
Jiang K, Wang Y H, Gao X L, et al. Angew Chem Int Edit, 2018,57(21):6216
DOI URL |
[23] | Wang G, Qi J, Qi A J, et al. Chinese Journal of Analysis Laboratory, 2019,38(1):7 |
王冠, 齐骥, 戚安金, 等. 分析试验室, 2019,38(1):7 | |
[24] |
Wang X R, Li B W, You H Y, et al. Chinese Journal of Analytical Chemistry, 2015,43(10):1499
DOI URL |
王欣然, 李博伟, 尤慧燕, 等. 分析化学, 2015,43(10):1499 | |
[25] |
Han X X, Qi J, Song Z H, et al. Scientia Sinica Chimica, 2020,50(4):463
DOI URL |
韩笑笑, 齐骥, 宋志花, 等. 中国科学: 化学, 2020,50(4):463 | |
[26] |
Lan L Y, Yao Y, Ping J F, et al. Biosens Bioelectron, 2017,91:504
DOI URL |
[27] |
Li Y, Xu J Y, Sun C Y. Rsc Adv, 2015,5(2):1125
DOI URL |
[28] |
Hasanzadeh M, Mokhtari F, Shadjou N, et al. Mat Sci Eng C-Mater, 2017,75:247
DOI URL |
[29] |
Javanbakht S, Namazi H. Mat Sci Eng C-Mater, 2018,87:50
DOI URL |
[30] |
Faridbod F, Sanati A L. Curr Anal Chem, 2019,15(2):103
DOI URL |
[31] |
Shao Y Y, Wang J, Wu H, et al. Electroanal, 2010,22(10):1027
DOI URL |
[32] | Singh M, Singh S, Singh S P, et al. Trends Environ Ana, 2020,27:e00092 |
[33] |
Jalili R, Khataee A, Rashidi M R, et al. Food Chem, 2020,314:126172
DOI URL |
[34] |
Jia M F, Zhang Z, Yang X B, et al. Scientia Sinica Chimica, 2017,47(3):300
DOI URL |
贾梦凡, 张忠, 杨兴斌, 等. 中国科学: 化学, 2017,47(3):300 | |
[35] |
Amjadi M, Jalili R. Spectrochim Acta A, 2018,191:345
DOI URL |
[36] |
Liu H C, Ding L, Chen L G, et al. J Ind Eng Chem, 2019,69:455
DOI URL |
[37] |
Sun X C, Wang Y, Lei Y. Chem Soc Rev, 2015,44(22):8019
DOI URL |
[38] |
Song W, Duan W X, Liu Y H, et al. Anal Chem, 2017,89(24):13626
DOI URL |
[39] |
Su L, Yang L, Sun Q, et al. New J Chem, 2018,42(9):6867
DOI URL |
[40] |
Chen X Q, Luan Y, Wang N W, et al. J Sep Sci, 2018,41(23):4394
DOI URL |
[41] |
Liu X Q, Wang T, Wang W J, et al. J Ind Eng Chem, 2019,72:100
DOI URL |
[42] |
Chullasat K, Nurerk P, Kanatharana P, et al. Sensor Actuat B-Chem, 2018,254:255
DOI URL |
[43] |
Jalili R, Khataee A. Food Chem Toxicol, 2020,146:111806
DOI URL |
[44] |
Sahebi H, Konoz E, Ezabadi A, et al. Microchem J, 2020,154:104605
DOI URL |
[45] | Cui J X, Shi Q J, Wang G M, et al. Environmental Chemistry, 2020,39(4):1065 |
崔敬鑫, 石秋俊, 王国民, 等. 环境化学, 2020,39(4):1065 | |
[46] |
Roushani M, Rahmati Z, Farokhi S, et al. Mat Sci Eng C-Mater, 2020,108:110388
DOI URL |
[47] |
Emrani A S, Danesh N M, Lavaee P, et al. Food Chem, 2016,190:115
DOI URL |
[48] |
Wang B, Chen Y F, Wu Y Y, et al. Biosens Bioelectron, 2016,78:23
DOI PMID |
[49] |
Wang J L, Lu T T, Hu Y, et al. Spectrochim Acta A, 2020,226:117651
DOI URL |
[50] |
Ghanbari K, Roushani M. Bioelectrochemistry, 2018,120:43
DOI URL |
[51] |
Roushani M, Ghanbari K, Hoseini S J. Microchem J, 2018,141:96
DOI URL |
[52] |
Roushani M, Ghanbari K. Anal Methods-UK, 2018,10(43):5197
DOI URL |
[53] |
Ahmad O S, Bedwell T S, Esen C, et al. Trends Biotechnol, 2019,37(3):294
DOI |
[54] |
Roushani M, Rahmati Z, Hoseini J, et al. Colloid Surface B, 2019,183:110451
DOI URL |
[55] |
Geng Y Y, Guo M L, Tan J A, et al. Sensor Actuat B-Chem, 2018,268:47
DOI URL |
[56] |
Khansili N, Rattu G, Krishna P M. Sensor Actuat B-Chem, 2018,265:35
DOI URL |
[57] |
Majdinasab M, Mitsubayashi K, Marty J L. Trends Biotechnol, 2019,37(8):898
DOI |
[58] |
Chen Y, Cao Y, Ma C, et al. Mater Chem Front, 2020,4(2):369
DOI URL |
[59] |
Li L L, Chen Y, Zhu J J. Anal Chem, 2017,89(1):358
DOI URL |
[60] |
Liu Z Y, Qi W J, Xu G B. Chem Soc Rev, 2015,44(10):3117
DOI URL |
[61] |
Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015,11(14):1620
DOI PMID |
[62] |
He Z J, Kang T F, Lu L P, et al. J Electroanal Chem, 2020,860:113870
DOI URL |
[63] |
Hu Y X, Su L Y, Wang S, et al. Microchim Acta, 2019,186(8):512
DOI URL |
[64] |
Liu X G, Huang D L, Lai C, et al. TrAC-Trends Anal Chem, 2018,109:260
DOI URL |
[65] |
Zan M H, Rao L, Huang H M, et al. Sensor Actuat B-Chem, 2018,262:555
DOI URL |
[66] |
Yu J J, Yuan K, Li X, et al. Spectrochim Acta A, 2019,223:117366
DOI URL |
[67] |
Tsai W H, Huang T C, Huang J J, et al. J Chromatogr A, 2009,1216(12):2263
DOI URL |
[68] |
Qi H J, Teng M, Liu M, et al. J Colloid Interf Sci, 2019,539:332
DOI URL |
[69] |
Chen L T, Liu Y L, Cheng G H, et al. Sci Total Environ, 2021,759:143432
DOI URL |
[70] |
Fu Y Z, Huang L, Zhao S J, et al. Spectrochim Acta A, 2021,246:118947
DOI URL |
[71] |
Miao H, Wang Y Y, Yang X M. Nanoscale, 2018,10(17):8139
DOI URL |
[72] |
Hu J, Yang X F, Peng Q Q, et al. Food Control, 2020,108:106832
DOI URL |
[73] |
Xu S H, Gao T, Feng X Y, et al. Biosens Bioelectron, 2017,97:203
DOI URL |
[74] |
Svechkarev D, Sadykov M R, Bayles K W, et al. ACS Sensors, 2018,3(3):700
DOI PMID |
[75] |
Huang W, Xie Z Y, Deng Y Q, et al. Sensor Actuat B-Chem, 2018,254:1057
DOI URL |
[76] |
Mao Y N, Cui S N, Li W T, et al. Sensor Actuat B-Chem, 2019,296:126694
DOI URL |
[77] |
Long D Y, Peng J D, Peng H J, et al. Analyst, 2019,144(10):3307
DOI URL |
[78] |
Xu Z J, Wang Z K, Liu M Y, et al. Spectrochim Acta A, 2020,232:118147
DOI URL |
[79] |
Velusamy V, Palanisamy S, Kokulnathan T, et al. J Colloid Interf Sci, 2018,530:37
DOI URL |
[80] |
Labib M, Sargent E H, Kelley S O. Chem Rev, 2016,116(16):9001
DOI URL |
[81] |
Gan T, Sun J Y, Yu M M, et al. Food Chem, 2017,214:82
DOI URL |
[82] |
Huang J Y, Bao T, Hu T X, et al. Microchim Acta, 2017,184(1):127
DOI URL |
[83] |
Gondim C S, Duran G M, Contento A M, et al. Food Anal Method, 2018,11(6):1711
DOI URL |
[84] |
Pang P F, Yan F Q, Li H Z, et al. Anal Methods-UK, 2016,8(24):4912
DOI URL |
[85] |
Muthusankar G, Devi R K, Gopu G. Biosens Bioelectron, 2020,150:111947
DOI PMID |
[86] |
Chen J, Huang Y N, Wei X, et al. Chem Commun, 2019,55(73):10908
DOI |
[87] |
Yuan N, Chen J, Cai T P, et al. J Chromatogr A, 2020,1619:460930
DOI URL |
[88] |
Yuan N, Chen J, Zhou H, et al. Talanta, 2020,218:121140
DOI URL |
[89] |
Wu Q, Hou X D, Zhang X F, et al. Talanta, 2021,226:122148
DOI URL |
[90] | Lü M, Chen L X. Chinese Journal of Chromatography, 2020,38(1):95 |
吕敏, 陈令新. 色谱, 2020,38(1):95 | |
[91] |
Yang Q F, Hong H, Luo Y K, et al. Chem Eng J, 2020,392:123680
DOI URL |
[92] |
Peng J, Liu D H, Shi T, et al. Anal Bioanal Chem, 2017,409(17):4157
DOI PMID |
[93] |
Dong S Y, Lou Q, Huang G Q, et al. Anal Bioanal Chem, 2018,410(28):7337
DOI URL |
[94] | Lahouidak S, Soriano M L, Salghi R, et al. Electrophoresis, 2019,40(18/19):2336 |
[95] |
Ibarra I S, Rodriguez J A, Paez-Hernandez M E, , et al. Electrophoresis, 2012,33(13):2041
DOI URL |
[96] |
Taranova N A, Berlina A N, Zherdev A V, et al. Biosens Bioelectron, 2015,63:255
DOI PMID |
[97] |
Byzova N A, Smirnova N I, Zherdev A V, et al. Talanta, 2014,119:125
DOI URL |
[98] |
Byzova N A, Zvereva E A, Zherdev A V, et al. Talanta, 2010,81(3):843
DOI URL |
[99] |
Byzova N A, Zvereva E A, Zherdev A V, et al. Anal Chim Acta, 2011,701(2):209
DOI URL |
[100] |
Chen H Y, Zhang L, Hu Y, et al. Sensor Actuat B-Chem, 2021,329:129135
DOI URL |
[1] | 李婷, 常蒙蒙, 石先哲, 许国旺. 分子印迹聚合物在极性农药残留检测中的应用进展[J]. 色谱, 2021, 39(9): 930-940. |
[2] | 张文敏, 李青青, 方敏, 高佳, 陈宗保, 张兰. 金属有机骨架衍生材料在样品前处理中的应用研究进展[J]. 色谱, 2021, 39(9): 941-949. |
[3] | 周丽慧, 肖小华, 李攻科. 干果类食品的样品前处理与分析检测方法研究进展[J]. 色谱, 2021, 39(9): 958-967. |
[4] | 贾璞, 边阳阳, 白亚军, 孟雪, 高朔漠, 赵晔, 蔡宇杰, 郑晓晖. 色谱在药物-机体复杂巨系统研究中的应用进展[J]. 色谱, 2021, 39(9): 950-957. |
[5] | 高文杰, 白玉, 刘虎威. 功能化磁性纳米材料在糖蛋白及糖肽富集中的研究进展[J]. 色谱, 2021, 39(9): 981-988. |
[6] | 胡钰, 朱青青, 胡立刚, 廖春阳. 超高效液相色谱-串联质谱法同时测定土壤中30种抗生素[J]. 色谱, 2021, 39(8): 878-888. |
[7] | 张昱, 齐骥, 刘丰, 王宁, 孙西艳, 崔荣, 于佳洛, 叶嘉明, 刘萍, 李博伟, 陈令新. 微流控纸芯片在环境分析检测中的应用[J]. 色谱, 2021, 39(8): 802-815. |
[8] | 朱树芸, 赵先恩, 刘虎威. 醛类标志物的化学衍生化色谱-质谱分析方法进展[J]. 色谱, 2021, 39(8): 845-854. |
[9] | 姜皓文, 李健, 谭志强, 郭瑛瑛, 刘艳伟, 胡立刚, 阴永光, 蔡勇, 江桂斌. 无固定相分离-电感耦合等离子体质谱法在环境中痕量金属纳米颗粒分析中的应用[J]. 色谱, 2021, 39(8): 855-869. |
[10] | 张一清, 郭珊珊, 孙倩. 冷冻干燥技术在环境水样有机新污染物前处理中的应用进展[J]. 色谱, 2021, 39(8): 827-834. |
[11] | 梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577. |
[12] | 邢仕歌, 贺木易, 刘通, 雍炜, 张峰. 固相萃取材料在金属离子前处理应用中的研究进展[J]. 色谱, 2021, 39(5): 455-462. |
[13] | 廖颖敏, 黄晓佳, 王卓卓, 甘蕊. 基于碳基磁性材料的磁固相萃取技术在食品分析应用中的研究进展[J]. 色谱, 2021, 39(4): 368-375. |
[14] | 温翰荣, 朱珏, 张博. 芯片液相色谱技术进展[J]. 色谱, 2021, 39(4): 357-367. |
[15] | 魏佳楠, 秦墨林, 杨俊超, 杨柳. 填充吸附剂微萃取技术及其在微小体积样品萃取应用中的研究进展[J]. 色谱, 2021, 39(3): 219-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||