色谱 ›› 2021, Vol. 39 ›› Issue (10): 1055-1064.DOI: 10.3724/SP.J.1123.2021.06015
收稿日期:
2021-06-09
出版日期:
2021-10-08
发布日期:
2021-09-10
通讯作者:
徐兆超
作者简介:
*Tel:(0411)84379648,E-mail: zcxu@dicp.ac.cn.基金资助:
CHEN Jie1,2, LIU Wenjuan1,2, XU Zhaochao1,*()
Received:
2021-06-09
Online:
2021-10-08
Published:
2021-09-10
Contact:
XU Zhaochao
Supported by:
摘要:
所见即所得是生命科学研究的中心哲学,贯穿在不断认识单个分子、分子复合体、分子动态行为和整个分子网络的历程中。活的动态的分子才是有功能的,这决定了荧光显微成像在生命科学研究中成为不可替代的工具。但是当荧光成像聚焦到分子水平的时候,所见并不能给出想要得到的。这个障碍是由于受光学衍射极限的限制,荧光显微镜无法在衍射受限的空间内分辨出目标物。超分辨荧光成像技术突破衍射极限的限制,在纳米尺度至单分子水平可视化生物分子,以前所未有的时空分辨率研究活细胞结构和动态过程,已成为生命科学研究的有力工具,并逐渐应用到材料科学、催化反应过程和光刻等领域。超分辨成像技术原理不同,其具有的技术性能各异,限制了各自特定的技术特色和应用范围。目前主流的超分辨成像技术包括3种:结构光照明显微镜技术(structured illumination microscopy, SIM)、受激发射损耗显微技术(stimulated emission depletion, STED)和单分子定位成像技术(single molecule localization microscopy, SMLM)。这些显微镜采用不同的复杂技术,但是策略却是相同和简单的,即通过牺牲时间分辨率来提升衍射受限的空间内相邻两个发光点的空间分辨。该文通过对这3种技术的原理比较和在生物研究中的应用进展介绍,明确了不同超分辨成像技术的技术优势和适用的应用方向,以方便研究者在未来研究中做合理的选择。
中图分类号:
陈婕, 刘文娟, 徐兆超. 多种超分辨荧光成像技术比较和进展评述[J]. 色谱, 2021, 39(10): 1055-1064.
CHEN Jie, LIU Wenjuan, XU Zhaochao. Comparison and progress review of various super-resolution fluorescence imaging techniques[J]. Chinese Journal of Chromatography, 2021, 39(10): 1055-1064.
图1 主要超分辨率技术原理
Fig. 1 Principle of three super-resolution technologies a. The principle of structured illumination microscopy (SIM). The sample is illuminated by a sinusoidal pattern to produce moiré fringes, which can be detected using a SIM microscope. After acquiring approximately 15 images with different phases and orientations, the algorithm was used to remove the known illumination patterns to reconstruct a high-resolution image. b. The principle of stimulated emission depletion (STED). In STED imaging, an excitation laser is used to excite the fluorophore, and the sample is irradiated by a second, doughnut-shaped laser beam aligned with the excitation laser. The excited fluorophores are depleted by stimulated emission and driven to the ground state before emitting fluorescence, thereby improving the imaging resolution. c. The principle of single molecule localization microscopy (SMLM) is to stochastically activate a small portion of single-molecule fluorophores, which are acquired, located, and inactivated. This cycle is repeated to accurately locate each fluorophore and reconstruct a super-resolution image. Picture based on a reported paper[7], obtained with permission from the copyright of the Multidisciplinary Digital Publishing Institute.
图2 3D-SIM成像
Fig. 2 3D-SIM imaging a. Simultaneous imaging of 3D-SIM in C2C12 with DAPI-stained DNA (blue), nuclear membrane stained with anti-lamin B (green), and epitope NPC stained with an antibody that specifically recognizes the epitope NPC (red)[25]. Scale bar: 1 μm. b. 3D-SIM imaging of the FtsZ structure fused with GFP in living Bacillus subtilis cells[29]. The higher image resolution provided by 3D-SIM allows the observation of the contracted Z ring and the inside of the cell membrane during division (indicated by the white arrow). Pictures based on reported papers[25,29], obtained with permission from the American Association for the Advancement of Science and PLOS. CLSM: confocal laser scanning microscopy; NPC: the nuclear pore complex; GFP: green fluorescent protein.
图3 活细胞STED成像
Fig. 3 STED imaging of live cells a. STED imaging COS-7 cells expressing Halo-Sec61b (endoplasmic reticulum membrane) and SNAP-KDEL (endoplasmic reticulum cavity) fusion proteins labeled with ATTO590 and SiR, respectively. Scale bar: 2 μm. b. STED imaging HeLa cells expressing ARF1-Halo and β-COP-SNAP labeled with ATTO590 and SiR, respectively. Scale bar: 5 μm. c. The ARF1 tubular structure is the main membrane outflow of the Golgi body. Picture based on reported papers[38, 39], obtained with permission from copyrights of Springer Nature and The American Society for Cell Biology.
图4 哺乳动物细胞BS-C-1中(a)微管和CCPs的双色STORM成像和(b) 3D-STORM成像
Fig. 4 (a) Two-color stochastically optical reconstruction microscopy (STORM) imaging of microtubules and CCPs and (b) 3D-STORM imaging of microtubules in mammalian cells BS-C-1 Picture based on reported papers[42,43], obtained with permission from copyrights of the American Association for the Advancement of Science.
[1] |
Kner P, Chhun B B, Griffis E R, et al. Nat Methods, 2009, 6(5):339
DOI URL |
[2] |
Hell S W. Angew Chem Int Ed, 2015, 54(28):8054
DOI URL |
[3] |
Moerner W E. Angew Chem Int Ed, 2015, 54(28):8067
DOI URL |
[4] |
Shroff H, Galbraith C G, Galbraith J A, et al. Nat Methods, 2008, 5(5):417
DOI PMID |
[5] |
Huang B, Jones S A, Brandenburg B, et al. Nat Methods, 2008, 5(12):1047
DOI PMID |
[6] |
Gustafsson M G L. PNAS, 2005, 102(37):13081
PMID |
[7] | Georgieva M, Nöllmann M. Res Rep Biol, 2015, 6:157 |
[8] |
Hirano Y, Matsuda A, Hiraoka Y. Microscopy, 2015, 64(4):237
DOI URL |
[9] |
Heintzmann R, Huser T. Chem Rev, 2017, 117(23):13890
DOI PMID |
[10] |
Sonnen K F, Schermelleh L, Leonhardt H, et al. Biol Open, 2012, 1(10):965
DOI URL |
[11] |
Hell S W, Sahl S J, Bates M, et al. J Phys D, 2015, 48(44):443001
DOI URL |
[12] |
Muller T, Schumann C, Kraegeloh A. ChemPhysChem, 2012, 13(8):1986
DOI URL |
[13] |
Blom H, Widengren J. Chem Rev, 2017, 117(11):7377
DOI URL |
[14] |
Willig K I, Kellner R R, Medda R, et al. Nat Methods, 2006, 3(9):721
DOI URL |
[15] |
Wang L, Frei M S, Salim A, et al. J Am Chem Soc, 2019, 141(7):2770
DOI PMID |
[16] |
Fernandez-Suarez M, Ting A Y. Nat Rev Mol Cell Biol, 2008, 9(12):929
DOI URL |
[17] |
Samanta S, He Y, Sharma A, et al. Chem, 2019, 5(7):1697
DOI |
[18] |
Yang Z, Sharma A, Qi J, et al. Chem Soc Rev, 2016, 45(17):4651
DOI URL |
[19] |
Betzig E, Patterson G H, Sougrat R, et al. Science, 2006, 313(5793):1642
PMID |
[20] |
Jradi F M, Lavis L D. ACS Chem Biol, 2019, 14(6):1077
DOI PMID |
[21] |
Zou G, Liu C, Fang Z, et al. Sens Actuators B Chem, 2019, 288:113
DOI URL |
[22] |
Vicidomini G, Bianchini P, Diaspro A. Nat Methods, 2018, 15(3):173
DOI PMID |
[23] | Sahl S J, Hell S W, Jakobs S. Nat Rev Mol Cell Biol, 2017, 18(11):685 |
[24] |
Huang B, Bates M, Zhuang X. Annu Rev Biochem, 2009, 78:993
DOI PMID |
[25] |
Schermelleh L, Carlton P M, Haase S, et al. Science, 2008, 320(5881):1332
DOI PMID |
[26] |
Wang C J, Carlton P M, Golubovskaya I N, et al. Genetics, 2009, 183(3):905
DOI URL |
[27] |
Brown A C N, Oddos S, Dobbie I M, et al. PLOS Biol, 2011, 9(9):e1001152
DOI URL |
[28] |
Cogger V C, McNerney G P, Nyunt T, et al. J Struct Biol, 2010, 171(3):382
DOI URL |
[29] |
Strauss M P, Liew A T, Turnbull L, et al. PLOS Biol, 2012, 10(9):e1001389
DOI URL |
[30] |
Horsington J, Turnbull L, Whitchurch C B, et al. J Virol Methods, 2012, 186(1/2):132
DOI URL |
[31] |
Hirvonen L M, Wicker K, Mandula O, et al. Eur Biophys J, 2009, 38(6):807
DOI URL |
[32] |
Shao L, Kner P, Rego E H, et al. Nat Methods, 2011, 8(12):1044
DOI PMID |
[33] |
Huang X, Fan J, Li L, et al. Nat Biotechnol, 2018, 36(5):451
DOI URL |
[34] |
Guo Y, Li D, Zhang S, et al. Cell, 2018, 175(5):1430
DOI URL |
[35] |
Donnert G, Keller J, Medda R, et al. PNAS, 2006, 103(31):11440
PMID |
[36] |
Westphal V, Rizzoli S O, Lauterbach M A, et al. Science, 2008, 320(5873):246
DOI PMID |
[37] |
Lukinavicius G, Reymond L, D'Este E , et al. Nat Methods, 2014, 11(7):731
DOI |
[38] |
Bottanelli F, Kromann E B, Allgeyer E S, et al. Nat Commun, 2016, 7:10778
DOI PMID |
[39] |
Bottanelli F, Kilian N, Ernst A M, et al. Mol Biol Cell, 2017, 28(12):1676
DOI PMID |
[40] |
Neuman K C, Block S M. Rev Sci Instrum, 2004, 75(9):2787
PMID |
[41] |
Gelles J, Schnapp B J, Sheetz M P. Nature, 1988, 331(6155):450
DOI URL |
[42] |
Bates M, Huang B, Dempsey G T, et al. Science, 2007, 317(5845):1749
PMID |
[43] |
Huang B, Wang W, Bates M, et al. Science, 2008, 319(5864):810
DOI PMID |
[44] |
Juette M F, Gould T J, Lessard M D, et al. Nat Methods, 2008, 5(6):527
DOI URL |
[45] |
Jones S A, Shim S-H, He J, et al. Nat Methods, 2011, 8(6):499
DOI PMID |
[46] |
Shim S H, Xia C, Zhong G, et al. PNAS, 2012, 109(35):13978
DOI URL |
[47] |
Uno S-N, Kamiya M, Yoshihara T, et al. Nat Chem, 2014, 6(8):681
DOI URL |
[48] |
Takakura H, Zhang Y, Erdmann R S, et al. Nat Biotechnol, 2017, 35(8):773
DOI PMID |
[49] |
Fornasiero E F, Opazo F. BioEssays, 2015, 37(4):436
DOI PMID |
[1] | 孔昊, 张强, 张薇, 刘伟文, 曹成喜, 樊柳荫. 基于氧化还原反应界面可视化定量检测辣根过氧化物酶[J]. 色谱, 2020, 38(2): 177-182. |
[2] | 马继平,陈令新,朱道乾,关亚风. 台锥形液相色谱柱内谱带流型的动态可视化研究[J]. 色谱, 2003, 21(2): 106-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||