色谱 ›› 2022, Vol. 40 ›› Issue (4): 333-342.DOI: 10.3724/SP.J.1123.2021.08010

• 研究论文 • 上一篇    下一篇

大体积直接进样-超高效液相色谱-三重四极杆质谱法测定水中7大类42种抗生素残留

孙慧婧1,*(), 李佩纹1, 张蓓蓓1, 陈慧敏2   

  1. 1.江苏省环境监测中心, 国家环境保护地表水环境有机污染物监测分析重点实验室, 江苏 南京 210019
    2.上海爱博才思分析仪器贸易有限公司, 上海 200335
  • 收稿日期:2021-08-14 出版日期:2022-04-08 发布日期:2022-04-01
  • 通讯作者: 孙慧婧
  • 基金资助:
    江苏省2019年环境监测科研基金项目计划(1909)

Determination of 42 antibiotic residues in seven categories in water using large volume direct injection by ultra high performance liquid chromatography-triple quadrupole mass spectrometry

SUN Huijing1,*(), LI Peiwen1, ZHANG Beibei1, CHEN Huiming2   

  1. 1. State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210019, China
    2. SCIEX Analytical Instrument Trading Co, Shanghai 200335, China
  • Received:2021-08-14 Online:2022-04-08 Published:2022-04-01
  • Contact: SUN Huijing
  • Supported by:
    Jiangsu Province 2019 Environmental Monitoring Research Fund Project Plan(1909)

摘要:

抗生素作为新型有机污染物在自然水体中被频繁检出,检出种类多且含量水平低,为了实现更加快速、全面、准确的高通量分析,研究开发了一种利用大体积直接进样测定水中7大类(磺胺类、林可酰胺类、喹诺酮类、大环内酯类、四环素类、头孢类及氯霉素类)42种抗生素的超高效液相色谱-三重四极杆质谱法。水样经0.22 μm滤膜过滤,加入Na2EDTA并调节pH值至6.0~8.0,加入内标混匀后,采用Phenomenex Kinetex C18柱(50 mm×30 mm, 2.6 μm),以0.1%(v/v)甲酸水溶液-乙腈作为流动相进行梯度洗脱,质谱智能化分时间段-多反应选择离子监测(Schedule-MRM)模式进行检测。42种抗生素在相关线性范围内线性良好(r=0.9949~0.9995),回收率为80.1%~125%,相对标准偏差为0.8%~12.2%,方法检出限为0.015~3.561 ng/L。将该方法应用于10份水源水和5份末梢水的检测,结果显示在42种抗生素中,12种抗生素有检出,包括磺胺类、大环内酯类、林可酰胺类和氯霉素类,其在水源水中的检出率达100%;林可霉素和氯霉素是检出质量浓度最高的两种抗生素,它们的质量浓度范围分别为3.83~13.8和24.8~33.6 ng/L。该方法从检出限和回收率两方面与标准方法和文献报道进行了比较,检出限及回收率均满足要求。该方法与传统前处理方法相比具有简单、快速、绿色、精密度高、准确度高、消耗样品量小的优点,能用于地表水、地下水、末梢水等较为洁净水体中42种痕量水平的抗生素测定。

关键词: 大体积直接进样, 超高效液相色谱-三重四极杆质谱, 抗生素, 水体

Abstract:

Antibiotics are emerging contaminants that have recently attracted attention. They have been detected in natural water and pose health concerns owing to potential antibiotic resistance. Antibiotics are ubiquitous in aquatic environments, with a wide spectrum and trace levels. It is difficult to detect all types of antibiotics with completely different physicochemical properties. Solid phase extraction (SPE) is a common sample preparation procedure. For a fast and high-throughput continuous on-line analysis of these emerging contaminants, a method for the determination of 42 antibiotics (grouped into seven categories: sulfonamides, fluoroquinolones, lincosamides, macrolides, tetracyclines, cephalosporins, and chloramphenicols) in environmental water was developed based on ultra high performance liquid chromatography combined with tandem mass spectrometry (UHPLC-MS/MS) involving large volume direct injection without sample enrichment and cleanup.
The collected water samples were filtered through a 0.22-μm filter membrane, their pH levels were adjusted to 6.0-8.0 after adding Na2EDTA, and then the solutions were mixed with an internal standard. The addition of Na2EDTA contributed to the release of tetracyclines and fluoroquinolones from the metal chelate. Improved recoveries were observed for all the compounds when the pH of the aqueous solution was set at 6.0-8.0. The optimized UHPLC conditions were as follows: chromatographic column, Phenomenex Kinetex C18 column (50 mm×30 mm, 2.6 μm); mobile phase, acetonitrile and 0.1% (v/v) formic acid aqueous solution; flow rate, 0.4 mL/min; injection volume, 100 μL. In the UHPLC-MS/MS experiment, chloramphenicol, thiamphenicol, and florfenicol were analyzed in the negative ionization scheduled multiple reaction monitoring mode (scheduled-MRM), while the other 39 antibiotics were analyzed in the positive scheduled-MRM mode. This acquisition method improved the response of each target compound by dividing the time of the analysis test cycle and scanning the ion channels of chromatographic peaks at different time periods. The ionspray voltage was set at 5500 and -4500 V in positive and negative modes, respectively. The source temperature for both ionization modes was set at 500 ℃, which was optimized to improve the sensitivity. Instrumental parameters like collision energy and declustering potential were also optimized.
Good linearity was observed for all the tested antibiotics, with a correlation coefficient (r) greater than 0.995. The method detection limits (MDLs) were 0.015-3.561 ng/L. The average recoveries ranged from 80.1% to 125%, while the relative standard deviations (RSDs) were between 0.8% and 12.2%. The method was successfully applied to the determination of 10 source water samples and 5 tap water samples. Twelve antibiotics, viz. sulfachloropyridazine, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfisomidine, clindamycin, lincomycin, roxithromycin, clarithromycin, erythromycin, thiamphenicol, and forfenicol, were detected in the 10 water samples with a detection frequency of 100%. The total antibiotic content in each sample ranged from not detected to 80.3 ng/L. Lincosamides and chloramphenicols were the predominant antibiotics in the water samples, with contents in the ranges of 3.83-13.7 and 4.23-33.6 ng/L, respectively. Therefore, the large volume direct injection method exhibited good performance in terms of MDL and recovery compared to standard methods and those reported previously.
Compared with traditional pretreatment methods, the large volume direct injection method is simpler, more rapid, more precise, and more accurate. It is a viable alternative to SPE, and can be used for the determination of the 42 antibiotics at trace levels in cleaner water bodies, such as surface water, groundwater, and tap water.

Key words: large volume direct injection, ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), antibiotics, water body

中图分类号: