色谱 ›› 2025, Vol. 43 ›› Issue (4): 297-308.DOI: 10.3724/SP.J.1123.2024.04012
收稿日期:
2024-05-29
出版日期:
2025-04-08
发布日期:
2025-03-26
通讯作者:
*Tel:(010)68918015,E-mail:qufengqu@bit.edu.cn(屈锋); Tel:(010)63125681,E-mail:yangge@imb.cams.cn(杨歌).
基金资助:
HU Yangyang1, YANG Ge2,*(), QU Feng1,*(
)
Received:
2024-05-29
Online:
2025-04-08
Published:
2025-03-26
Supported by:
摘要:
核酸适配体是通过指数富集配体系统进化(SELEX)技术获得的一段核糖核酸(RNA)或单链脱氧核糖核酸(ssDNA),可用于靶标的特异性识别。核酸适配体具有易于化学合成和修饰、高热稳定性、低毒性与低免疫原性等优势。小分子靶标的核酸适配体在新药研发、肿瘤治疗、疾病诊断、超快速灵敏检测、环境污染监测和毒品检测等领域具有广泛的应用前景。然而,小分子因结构简单、分子质量小且可供核酸结合的基团有限,导致靶向小分子的适配体结合不稳定,为适配体的筛选与传感器的开发带来了巨大挑战。高效的筛选技术是获取高性能适配体的关键,目前适用于小分子靶标的核酸适配体筛选技术主要分为3类:基于靶标固定的筛选技术、基于核酸库固定的筛选技术以及靶标非固定化的筛选技术。与其他两种筛选技术相比,靶标非固定化的筛选技术所需的筛选轮数更少且获得的适配体亲和力更高(通常在nmol/L水平)。本文总结了小分子靶标的非固定化核酸适配体筛选技术(包括氧化石墨烯(GO)-SELEX、毛细管电泳(CE)-SELEX和纳米金辅助(GNP)-SELEX )的原理、优缺点及应用进展。此外,本文总结了在适配体特异性评价中对照靶标的选择策略。
中图分类号:
胡洋洋, 杨歌, 屈锋. 小分子靶标的非固定化核酸适配体筛选技术研究进展[J]. 色谱, 2025, 43(4): 297-308.
HU Yangyang, YANG Ge, QU Feng. Research advances in non-immobilized aptamer screening techniques for small-molecule targets[J]. Chinese Journal of Chromatography, 2025, 43(4): 297-308.
Type | Targets | Aptamer sequences (5'-3') | Screening round | Affinity determina- tion methods | KD/ (nmol/L) |
---|---|---|---|---|---|
Pesticides | tebuconazole, inaben- fide, mefenacet[ | CGTACGGAATTCGCTAGCAGCGTCCACGAGTGTGG- TGTGGATCCGAGCTCCACGTG, etc. | 5 | isothermal titration calorimetry (ITC) | 10.00-100.00 |
glyphosate (GlyP)[ | GGACAGCTGGCCGCGTAGCGAGACACGTACAAGG- TACTATACGGCTGGCATATGTATCTG | 8 | fluorescence assay | 30.73±1.25* | |
thiamethoxam (TMX)[ | GTCGACGGATCCACCGACCATGCAAAGATGCACAA- AAACGACAGCAGCTGCAGGTCGAC | 9 | gold nanoparticle colorimetric assay | 118.34±13.85* | |
Toxins | T2 toxin[ | GTATATCAAGCATCGCGTGTTTACACATGCGAGAG- GTGAA | 10 | fluorescence assay | 20.80±3.10* |
gonyautoxin 1/4 (GTX1/4)[ | AACCTTTGGTCGGGCAAGGTAGGTT | 8 | biolayer interfer- ometry (BLI) | 21.90 | |
domoic acid (DA)[ | AAAAATAATTTAAATTTTCTACCCAATGCTTTTCGC- ATAA | 16 | fluorescence assay | 62.07±19.97* | |
tetrodotoxin (TTX)[ | TCAAATTTTCGTCTACTCAATCTTTCTGTCTTATC | 16 | fluorescence assay | 44.12±15.38* | |
saxitoxin (STX)[ | CTTTTTACAAAATTCTCTTTTTACCTATATTATGAA- CAGA | 16 | fluorescence assay | 61.44±23.18* | |
gliotoxin[ | CATGTGTCCACATGGAGGTGACCT | 8 | BLI, ITC | 196.00 | |
okadaic acid[ | ATTTGACCATGTCGAGGGAGACGCGCAGTCGCTAC- CACCT | 8 | fluorescence assay | 5.63±3.55* | |
Antibiotics | penicillin G (Pen G)[ | CACCAGTCAGACAGCACGGTGACTGGAGTGACGTC- GGTACCTGAGATCGAGTGACGTCGGTACCTG | 9 | electrochemical sensing | 105.15±1.94* |
patulin[ | GGCCCGCCAACCCGCATCATCTACACTGATATTTTA- CCTT | 15 | fluorescence assay | 21.83±5.02* | |
ofloxacin[ | TGGCGCTTAGGTGTAATAACCTGAGGACGGCTTGG, TGGTTAAACCACGGTGAACCACTGCGCAGTAGGTC | 7 | balanced filtration | 130.10, 159.10 | |
Drugs | ractopamine (RAC)[ | AGCAGCACAGAGGTCAGATGGTCTCTACTAAAAGT- TTTGATCATACCGTTCACTAATTGACCTATGCGTGC- TACCGTGAA | 16 | GO adsorption | 54.22±8.02* |
synthetic cannabinoids (SCs)[ | C6-NH2-AGGAATTCAGATCTCCCTGCAGTGGTGTTC- AATGTTTTTGTGCTGTTCTGTACTGGCGCCTCGAGG- AGCTCAGGATCCCG-SH | 5 | electrochemical sensing | - | |
sulfamethazine (SMZ)[ | CGTTAGACG | 7 | fluorescence assay | 24.60 | |
ephedrine[ | TCCGTCGGCGGCGGCCCCTTCCTACAGCTTTCCCG- GTCGC | 10 | ITC | 2.86±0.24* | |
tramadol (TH)[ | CTTAAACCTGGTCGGATAGTCTTCGAGACTCGCGG- TCGCATTT | 10 | fluorescence assay | 178.40 | |
L-carnitine[ | ACCTTGCGTGCTCACGGCAGCCTCTCGGACAGCCC- TGTGT | 13 | resonance rayleigh scattering (RRS) | - | |
Biological metabolites | β-carotene[ | CAGCTCAGAAGCTTGATCCTCCCACAATTATCACGT- AGTGTGCGGGTCACGCAATCTGACGACTCGAAGTC- GTGCATCTG | 6 | fluorescence assay | 5.04±1.99* |
25-hydroxyvitamin D3[ | AGCAGCACAGAGGTCATGGGGGGTGTGACTTTGGT- GTGCCTATGCGTGCTACGGAA | 4 | ITC | 11.00 | |
sarcosine[ | TAGGGAAGAGAAGGACATATGATGTGCCGCGCTT- CCCTTGCCGCTCAAAACAGACCACCCACTTTGACT- AGTACATGACCACTTGA | 8 | fluorescence assay | 0.33±0.05* | |
Organic pollutant | nonylphenol (NP)[ | ATGCGGATCCCGCGCGGCCGGCCAGTGCGCGAAG- CTTGCGC | 5 | gold nanoparticle colorimetric assay | 194.20±65.90* |
表1 GO-SELEX技术在小分子靶标适配体筛选中的应用
Table 1 Application of graphene oxide (GO)-systematic evolution of ligands by exponential enrichment (SELEX) technique in aptamer screening of small molecule targets
Type | Targets | Aptamer sequences (5'-3') | Screening round | Affinity determina- tion methods | KD/ (nmol/L) |
---|---|---|---|---|---|
Pesticides | tebuconazole, inaben- fide, mefenacet[ | CGTACGGAATTCGCTAGCAGCGTCCACGAGTGTGG- TGTGGATCCGAGCTCCACGTG, etc. | 5 | isothermal titration calorimetry (ITC) | 10.00-100.00 |
glyphosate (GlyP)[ | GGACAGCTGGCCGCGTAGCGAGACACGTACAAGG- TACTATACGGCTGGCATATGTATCTG | 8 | fluorescence assay | 30.73±1.25* | |
thiamethoxam (TMX)[ | GTCGACGGATCCACCGACCATGCAAAGATGCACAA- AAACGACAGCAGCTGCAGGTCGAC | 9 | gold nanoparticle colorimetric assay | 118.34±13.85* | |
Toxins | T2 toxin[ | GTATATCAAGCATCGCGTGTTTACACATGCGAGAG- GTGAA | 10 | fluorescence assay | 20.80±3.10* |
gonyautoxin 1/4 (GTX1/4)[ | AACCTTTGGTCGGGCAAGGTAGGTT | 8 | biolayer interfer- ometry (BLI) | 21.90 | |
domoic acid (DA)[ | AAAAATAATTTAAATTTTCTACCCAATGCTTTTCGC- ATAA | 16 | fluorescence assay | 62.07±19.97* | |
tetrodotoxin (TTX)[ | TCAAATTTTCGTCTACTCAATCTTTCTGTCTTATC | 16 | fluorescence assay | 44.12±15.38* | |
saxitoxin (STX)[ | CTTTTTACAAAATTCTCTTTTTACCTATATTATGAA- CAGA | 16 | fluorescence assay | 61.44±23.18* | |
gliotoxin[ | CATGTGTCCACATGGAGGTGACCT | 8 | BLI, ITC | 196.00 | |
okadaic acid[ | ATTTGACCATGTCGAGGGAGACGCGCAGTCGCTAC- CACCT | 8 | fluorescence assay | 5.63±3.55* | |
Antibiotics | penicillin G (Pen G)[ | CACCAGTCAGACAGCACGGTGACTGGAGTGACGTC- GGTACCTGAGATCGAGTGACGTCGGTACCTG | 9 | electrochemical sensing | 105.15±1.94* |
patulin[ | GGCCCGCCAACCCGCATCATCTACACTGATATTTTA- CCTT | 15 | fluorescence assay | 21.83±5.02* | |
ofloxacin[ | TGGCGCTTAGGTGTAATAACCTGAGGACGGCTTGG, TGGTTAAACCACGGTGAACCACTGCGCAGTAGGTC | 7 | balanced filtration | 130.10, 159.10 | |
Drugs | ractopamine (RAC)[ | AGCAGCACAGAGGTCAGATGGTCTCTACTAAAAGT- TTTGATCATACCGTTCACTAATTGACCTATGCGTGC- TACCGTGAA | 16 | GO adsorption | 54.22±8.02* |
synthetic cannabinoids (SCs)[ | C6-NH2-AGGAATTCAGATCTCCCTGCAGTGGTGTTC- AATGTTTTTGTGCTGTTCTGTACTGGCGCCTCGAGG- AGCTCAGGATCCCG-SH | 5 | electrochemical sensing | - | |
sulfamethazine (SMZ)[ | CGTTAGACG | 7 | fluorescence assay | 24.60 | |
ephedrine[ | TCCGTCGGCGGCGGCCCCTTCCTACAGCTTTCCCG- GTCGC | 10 | ITC | 2.86±0.24* | |
tramadol (TH)[ | CTTAAACCTGGTCGGATAGTCTTCGAGACTCGCGG- TCGCATTT | 10 | fluorescence assay | 178.40 | |
L-carnitine[ | ACCTTGCGTGCTCACGGCAGCCTCTCGGACAGCCC- TGTGT | 13 | resonance rayleigh scattering (RRS) | - | |
Biological metabolites | β-carotene[ | CAGCTCAGAAGCTTGATCCTCCCACAATTATCACGT- AGTGTGCGGGTCACGCAATCTGACGACTCGAAGTC- GTGCATCTG | 6 | fluorescence assay | 5.04±1.99* |
25-hydroxyvitamin D3[ | AGCAGCACAGAGGTCATGGGGGGTGTGACTTTGGT- GTGCCTATGCGTGCTACGGAA | 4 | ITC | 11.00 | |
sarcosine[ | TAGGGAAGAGAAGGACATATGATGTGCCGCGCTT- CCCTTGCCGCTCAAAACAGACCACCCACTTTGACT- AGTACATGACCACTTGA | 8 | fluorescence assay | 0.33±0.05* | |
Organic pollutant | nonylphenol (NP)[ | ATGCGGATCCCGCGCGGCCGGCCAGTGCGCGAAG- CTTGCGC | 5 | gold nanoparticle colorimetric assay | 194.20±65.90* |
Target | Screening steps | Aptamer sequence (5'-3') | Screening round | Affinity determination method | KD/ (nmol/L) |
---|---|---|---|---|---|
N-Methyl mesopor- phyrin IX (NMM)[ | positive selection | AGCAGCACAGAGGTCAGATGTGCTCGA- CTATTGAGTCAGGGGGTTGGGGCAACA- ATAAGCCCTATGCGTGCTACCGTGAA | 3 | normalized fluorescence intensity determination | 1200.0±100.0* |
Virginiamycin-M1 (VGM-M1)[ | positive selection | GCAGAGGGACAGGGAAGATGTAGACAT- CTGTGCTCTTCGC | 4 | CE-ultraviolet (UV) | 49.0 |
Histone H4-K16Ac[ | counter and positive selection | AGACGTAAGTTAATTGGACTTGGTCGTG- TGCGGCACAGCGATTGAAAT | 4 | surface plasmon resonance (SPR) | 47.0±24.0* |
Swine anaphylatoxin (C5a)[ | positive selection | TCGCTGTAGCTACAGGGTTTACCCGGTT- GGATGGAT | 6 | SPR | 4000.0 |
Glycosylated VEGF peptide fragment[ | positive and counter selection | GCACCCTAATGTGCAAGCTAATGCGGAA- TGGGGTCGGTTT | 8 | surface plasmon reso- nance imaging (SPRI) | 2500.0±400.0* |
Diethyl thiophosphate (DETP)[ | positive selection | GACGGGAGCTTGACACAGTCATTCCTTT- CTAGATGGTGGTT | - | gold nanoparticle colori- metric assay | 103.0±14.0* |
Clenbuterol hydro- chloride (Clen)[ | positive selection | AGGGCCTGGGCTGTTGAGGCAACGTCG- GTTTGTTTATTAA | 3 | capillary electrophoresis- laser induced fluorescence (LIF) | 931.5 |
Neuropeptide Y (NPY)[ | positive selection | AGCAGCACAGAGGTCAGATGCAAACCA- CAGCCTGATGGTTAGCGTATGTCATTTA- CGGACCTATGCGTGCTACCGTGAA | 4 | affinity capillary electro- phoresis (ACE) | 800.0 |
表2 CE-SELEX技术在小分子靶标适配体筛选中的应用
Table 2 Application of capillary electrophoresis (CE)-SELEX technique in aptamer screening of small molecule targets
Target | Screening steps | Aptamer sequence (5'-3') | Screening round | Affinity determination method | KD/ (nmol/L) |
---|---|---|---|---|---|
N-Methyl mesopor- phyrin IX (NMM)[ | positive selection | AGCAGCACAGAGGTCAGATGTGCTCGA- CTATTGAGTCAGGGGGTTGGGGCAACA- ATAAGCCCTATGCGTGCTACCGTGAA | 3 | normalized fluorescence intensity determination | 1200.0±100.0* |
Virginiamycin-M1 (VGM-M1)[ | positive selection | GCAGAGGGACAGGGAAGATGTAGACAT- CTGTGCTCTTCGC | 4 | CE-ultraviolet (UV) | 49.0 |
Histone H4-K16Ac[ | counter and positive selection | AGACGTAAGTTAATTGGACTTGGTCGTG- TGCGGCACAGCGATTGAAAT | 4 | surface plasmon resonance (SPR) | 47.0±24.0* |
Swine anaphylatoxin (C5a)[ | positive selection | TCGCTGTAGCTACAGGGTTTACCCGGTT- GGATGGAT | 6 | SPR | 4000.0 |
Glycosylated VEGF peptide fragment[ | positive and counter selection | GCACCCTAATGTGCAAGCTAATGCGGAA- TGGGGTCGGTTT | 8 | surface plasmon reso- nance imaging (SPRI) | 2500.0±400.0* |
Diethyl thiophosphate (DETP)[ | positive selection | GACGGGAGCTTGACACAGTCATTCCTTT- CTAGATGGTGGTT | - | gold nanoparticle colori- metric assay | 103.0±14.0* |
Clenbuterol hydro- chloride (Clen)[ | positive selection | AGGGCCTGGGCTGTTGAGGCAACGTCG- GTTTGTTTATTAA | 3 | capillary electrophoresis- laser induced fluorescence (LIF) | 931.5 |
Neuropeptide Y (NPY)[ | positive selection | AGCAGCACAGAGGTCAGATGCAAACCA- CAGCCTGATGGTTAGCGTATGTCATTTA- CGGACCTATGCGTGCTACCGTGAA | 4 | affinity capillary electro- phoresis (ACE) | 800.0 |
Target | Nucleic acid library type | Aptamer sequences (5'-3') | Screening round | Affinity determination method | KD/ (μmol/L) |
---|---|---|---|---|---|
Dichlorvos (DV)[ | DNA | GGAAGAACATGTGAGCAAAAGGCCAGCAAAAGG- CCAGGAACCGTAAAAAGGCCGCGTTGCTGGC | 8 | ITC | 0.850 |
Amyloid β-peptide (Aβ)[ | RNA | UAGCGUAUGCCACUCUCCUGGGACCCCCCGCCG- GAUGGCCA, UUUGGGGUGUCGGGCGAUUUUUA- GGGUUGGGCCAGGCCGU | 9 | Fluorescence anisotropy measurements | 21.6, 10.9 |
Zinc(II)-protoporphy- rin IX (ZnPPIX)[ | DNA | GGCGGGGGGTTGCTCTACTTGATGATCTGCGCTA- TCGCCGT | 11 | fluorescence assay | 9.53±1.86* |
Brassinolide (BL)[ | DNA | GCGGATCCCGCGCCGTGCAGAGGGAGACCGC | 9 | gold nanoparticle colorimetric assay | 0.0173 |
Bisphenol A (BPA)[ | DNA | GGACGCGCGAAGAATATAAGGTGGCCTGGCCGC- GCG | 11 | gold nanoparticle colorimetric assay | 0.0379 |
表3 GNP-SELEX技术在小分子靶标适配体筛选中的应用
Table 3 Application of gold nanoparticle-assisted (GNP)-SELEX technique in aptamer screening of small molecule targets
Target | Nucleic acid library type | Aptamer sequences (5'-3') | Screening round | Affinity determination method | KD/ (μmol/L) |
---|---|---|---|---|---|
Dichlorvos (DV)[ | DNA | GGAAGAACATGTGAGCAAAAGGCCAGCAAAAGG- CCAGGAACCGTAAAAAGGCCGCGTTGCTGGC | 8 | ITC | 0.850 |
Amyloid β-peptide (Aβ)[ | RNA | UAGCGUAUGCCACUCUCCUGGGACCCCCCGCCG- GAUGGCCA, UUUGGGGUGUCGGGCGAUUUUUA- GGGUUGGGCCAGGCCGU | 9 | Fluorescence anisotropy measurements | 21.6, 10.9 |
Zinc(II)-protoporphy- rin IX (ZnPPIX)[ | DNA | GGCGGGGGGTTGCTCTACTTGATGATCTGCGCTA- TCGCCGT | 11 | fluorescence assay | 9.53±1.86* |
Brassinolide (BL)[ | DNA | GCGGATCCCGCGCCGTGCAGAGGGAGACCGC | 9 | gold nanoparticle colorimetric assay | 0.0173 |
Bisphenol A (BPA)[ | DNA | GGACGCGCGAAGAATATAAGGTGGCCTGGCCGC- GCG | 11 | gold nanoparticle colorimetric assay | 0.0379 |
Screening technique | Separation medium | Screening mechanisms | Advantages | Disadvantages |
---|---|---|---|---|
GO-SELEX | GO | π-π stacking | simple, quick, high throughput, high affinity | spontaneous desorption, mistaken desorption, incomplete separation, cytotoxicity |
CE-SELEX | separation buffer | charge-to-mass ratio and migration rate | multiple screening modes, no fixing, high screening efficiency | difficulty in accurately collecting, susceptible to the properties of the solution, difficulty in defining aptamer-binding conditions |
GNP-SELEX | gold nanoparticle | van der Waals forces and electrostatic interaction | high specificity and stability, easy and low cost, colorimetric detection and chemiluminescence detection, directly monitorable | excessive adsorption |
表4 GO-SELEX、CE-SELEX和GNP-SELEX技术的分离介质、筛选机制及优缺点
Table 4 Separation media, screening mechanisms, advantages and disadvantages of GO-SELEX, CE-SELEX and GNP-SELEX techniques
Screening technique | Separation medium | Screening mechanisms | Advantages | Disadvantages |
---|---|---|---|---|
GO-SELEX | GO | π-π stacking | simple, quick, high throughput, high affinity | spontaneous desorption, mistaken desorption, incomplete separation, cytotoxicity |
CE-SELEX | separation buffer | charge-to-mass ratio and migration rate | multiple screening modes, no fixing, high screening efficiency | difficulty in accurately collecting, susceptible to the properties of the solution, difficulty in defining aptamer-binding conditions |
GNP-SELEX | gold nanoparticle | van der Waals forces and electrostatic interaction | high specificity and stability, easy and low cost, colorimetric detection and chemiluminescence detection, directly monitorable | excessive adsorption |
|
[1] | 姜刘杉, 周庆祥. 磁性共价有机骨架材料富集检测典型有机污染物的应用进展[J]. 色谱, 2025, 43(2): 107-119. |
[2] | 程颖超, 高祎阳, 李小敏, 陈鲁玉, 杜芳, 郭洁, 孟弋童, 孙敏, 冯娟娟. 基于共价有机框架材料的固相微萃取研究进展[J]. 色谱, 2025, 43(2): 120-130. |
[3] | 袁克宇, 熊军, 袁必锋. 环境污染物的跨胎盘转移效率研究进展[J]. 色谱, 2025, 43(1): 13-21. |
[4] | 江波, 高博, 魏淑娴, 梁振, 张丽华, 张玉奎. 蛋白质N-磷酸化修饰富集方法进展[J]. 色谱, 2024, 42(7): 623-631. |
[5] | 薛洁滢, 刘哲益, 王方军. 非变性质谱和紫外激光解离在蛋白质结构和相互作用分析中的应用[J]. 色谱, 2024, 42(7): 681-692. |
[6] | 康晶燕, 师彦平. 基于超分子衍生类多孔有机聚合物的样品前处理方法研究进展[J]. 色谱, 2024, 42(6): 496-507. |
[7] | 刘家玮, 唐长伟, 夏一然, 白泉. 色谱技术在抗体分离纯化中的应用进展[J]. 色谱, 2024, 42(6): 533-543. |
[8] | 谢宝轩, 吕洋, 刘震. 用于复杂生物样品体系分离与识别的分子印迹技术最新进展[J]. 色谱, 2024, 42(6): 508-523. |
[9] | 郑德圣, 汤雯淇, 朱建平, 古志远. 基于二维材料的色谱固定相制备及应用[J]. 色谱, 2024, 42(6): 524-532. |
[10] | 方敏, 吴雅萍, 张文敏, 张兰, 杨振泉. 新型功能材料在藻毒素萃取中的应用进展[J]. 色谱, 2024, 42(3): 225-233. |
[11] | 支梦雪, 王建设. 暴露组学在识别环境污染物及其健康危害中的应用进展[J]. 色谱, 2024, 42(2): 142-149. |
[12] | 刘惠楠, 孙振东, 刘倩, 周群芳, 江桂斌. 合成酚类化合物的脂代谢干扰效应与致肥胖作用[J]. 色谱, 2024, 42(2): 131-141. |
[13] | 李芳, 罗茜. 质谱成像技术在环境污染物分析及毒性研究中的应用进展[J]. 色谱, 2024, 42(2): 150-158. |
[14] | 宋媛媛, 祁增华, 蔡宗苇. 多组学质谱分析技术在化学暴露组研究中的应用[J]. 色谱, 2024, 42(2): 120-130. |
[15] | 由蕾, 孙国皓, 于迪, 刘心昱, 许国旺. 基于色谱-质谱联用的暴露组学分析方法和研究范式的新进展[J]. 色谱, 2024, 42(2): 109-119. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||