Loading...

List of Issues

    Chinese Journal of Chromatography
    2022, Vol. 40, No. 6
    Online: 08 June 2022

    For Selected: Toggle Thumbnails
    Highlights
    Reviews
    Progress in preparation of plant biomass-derived biochar and application in pesticide residues field
    ZHANG Xianzhao, ZHEN Dawei, LIU Fengmao, PENG Qingrong, WANG Zongyi
    2022, 40 (6):  499-508.  DOI: 10.3724/SP.J.1123.2021.10024
    Abstract ( 306 )   HTML ( 155 )   PDF (2040KB) ( 319 )  

    Pesticides such as insecticides, fungicides, and herbicides play an important role in the global agricultural industry as they reduce the occurrence of crop diseases, kill pests, and remove weeds. On the other hand, these pesticides are a double-edged sword because they have both acute effects and chronic adverse effects on human health. The widespread use of pesticides has led to their persistence in soil, water, and agricultural products, thus posing a serious threat to public health. Therefore, the removal and analysis of pesticides are critical to protecting human safety and health. When removing pesticides from the environment, it is imperative to ensure high removal efficiency while preventing secondary pollution to the environment. Because of the low concentrations of pesticide residue in the environment, complex matrix, and large throughput of pesticide residue analysis, a low-cost fast pre-treatment technique that has strong selectivity and an enrichment effect on the target pesticide residue, with little environmental impact, is required. Plant biomass-derived biochar is obtained from wheat straw, corn cob, rice husk, etc. This material has a large specific surface area, high pore capacity, tunable surface functional groups, and good environmental compatibility, which make it an inexpensive and efficient adsorbent. Hence, there is a need to systematically review the knowledge regarding the application of plant-based biochar on pesticide removal and pesticide residue analysis. This paper reviews the application progress of plant biomass-derived biochar in the above mentioned two areas over the last decade. The pesticide removal applications include reducing the mobility of pesticides in soil, eliminating the pollution caused by chiral pesticides, loading pesticide-degrading bacteria, and releasing fertilizers sustainably when removing pesticide. As mentioned above, plant biomass-derived biochar has a large specific surface area, a high number of functional groups on the surface, and good environmental compatibility. Therefore, it can effectively remove pesticides or their metabolites from the environment without causing any secondary pollution. During pre-treatment, plan biomass-derived biochar is used as an adsorbent for dispersive solid-phase extraction, solid-phase microextraction, and magnetic solid-phase extraction to selectively adsorb organophosphorus and triazole pesticides in fruits and vegetables, as well as organochlorine pesticides in the aquatic environment. This paper also introduces the adsorption mechanism of plant biomass-derived biochar, where studies based on computational simulations such as the density functional theory, molecular dynamics simulation, and giant canonical Monte Carlo simulation are carefully discussed. The benefits of adopting computational simulations are also mentioned. Finally, this paper summarizes the advantages and disadvantages of using plant biomass-derived biochar in pesticide removal and pre-treatment, as well as the future research trends in this area.

    Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry
    CHI Zhongmei, YANG Li
    2022, 40 (6):  509-519.  DOI: 10.3724/SP.J.1123.2021.11006
    Abstract ( 279 )   HTML ( 154 )   PDF (2376KB) ( 137 )  

    Most drugs used to treat diseases are chiral compounds. Drug enantiomers possess similar physical and chemical properties but may feature distinct pharmacological activities. Drug enantiomers may also exhibit different or even opposite functionalities for metabolism, in terms of the metabolic rate and toxicity in the body. Therefore, it is imperative to analyze, separate, and purify the enantiomers of drugs. The separation of chiral compounds is essential for drug research and development. It is also of significance in various fields including biological environments, food, and medicine.

    Various highly selective and sensitive methods have been developed for the quantitative and qualitative analyses of chiral compounds. A typically employed technique is high performance liquid chromatography-mass spectrometry (HPLC-MS). While HPLC-MS offers high sensitivity and reproducibility, it requires expensive chiral columns and MS-compatible mobile phases for the chromatographic column. Further, the column efficiency and resolution capacity in chiral chromatography packing require improvement. Recent progress has shown that capillary electrophoresis-mass spectrometry (CE-MS) has broad applications in chiral analysis. As a well-established analytical technique, CE-MS combines the highly efficient separation technique of CE with the highly sensitive detection technique of MS. Thus, it offers many essential advantages for analysis. For example, CE-MS has a high separation efficiency and requires very low amounts of samples and reagents. It can also achieve sensitive and selective determination, and the obtained diversified separation modes can be used for different samples. Therefore, CE-MS has proved to be important in analytical chemistry, especially in proteomics and metabolomics.

    CE can also exhibit excellent performance in chiral separation. Hence, combined with the sensitive detection technique of MS, CE-MS would be ideal for chiral analysis. Chiral CE-MS can provide a wide range of qualitative information on samples simultaneously in a single run, including the migration time, relative molecular mass, and ionic fragments. It addresses the challenges associated with identifying unknown chiral compounds in actual samples (including chiral compounds without UV absorption groups or fluorescence groups). The high-throughput analysis of multiple groups of chiral enantiomers can be achieved while mitigating the matrix effect of biological samples. In the last ten years, high performance chiral analysis strategies based on different CE-MS modes have been developed. These include electrokinetic chromatography-mass spectrometry (EKC-MS), micellar electrokinetic chromatography-mass spectrometry (MEKC-MS), and capillary electrochromatography-mass spectrometry (CEC-MS). CE-MS has been successfully applied in chiral analysis in various fields such as medicine, biology, food, and environmental science.

    CE-MS is promising in the chiral analysis of drugs, especially for drug development and drug quality control, as well as pharmacokinetics and pharmacodynamics research. Recent studies have focused on the development of MS-friendly and highly selective chiral analytical methods, which will broaden the application of CE-MS. In CEC-MS chiral analysis, more attention has been paid to developing novel capillary chiral stationary phases for monolithic or packed columns. Because of the diversity of chiral selectors for EKC-MS and MEKC-MS, the chiral analysis of drugs using these techniques has attracted intense research interest. Moreover, functional nanoparticles have been employed to increase the surface area of the CEC columns for enhancing the efficiency of chiral analysis. The chiral separation and analysis of miniaturized microchip equipment via CE-MS has also been explored, but remains to be widely used in practical applications.

    The purpose of this review is to provide insights that would aid in broadening the applications of CE-MS to chiral analysis. In this review, we primarily summarize research progress on the application of CE-MS to chiral analysis, based on the literature published during the years 2011-2021. Chiral selectors (e. g., modified cyclodextrin and polymer surfactants) and their reported applications in CE-MS are presented. The determination results for drug enantiomers using different CE-MS modes are compared. The application of CE-MS in other research fields is also presented, along with the advantages and limitations of different CE-MS methods.

    Articles
    Rapid screening and confirmation of 86 illegally added chemicals in fishery drugs by ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry
    KE Qingqing, LI Shiyan, WANG Dingnan, ZHOU Qin, ZHOU Fan, BEI Yijiang, CHEN Xiaoming, WANG Yang
    2022, 40 (6):  520-530.  DOI: 10.3724/SP.J.1123.2021.11023
    Abstract ( 205 )   HTML ( 94 )   PDF (1335KB) ( 129 )  
    Supporting Information

    With the rapid expansion of fisheries, one of the most significant limitations to the sustainable development of fisheries in China is the quality and safety of fishery products owing to the abuse of fishery drugs and the use of illegal and/or restricted chemicals in fishery drugs. A range of chemicals that are potential hazards to fishery drugs were selected for screening in this study. A comprehensive analytical method was developed, based on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS), for the rapid screening of 86 types of illegally added chemicals in fishery drugs. The fishery drug samples were extracted with 80% (v/v) acetonitrile aqueous solution and diluted to reduce matrix effects. The 86 target compounds were separated on an ACQUITY PREMIER HSS T3 column (100 mm×2.1 mm, 1.8 μm), with methanol and 0.1% formic acid as mobile phases, via gradient elution. The extract was directly analyzed by UPLC-Q-TOF-MS using electrospray ionization in the positive mode. The external standard method was used for quantification. In this study, the extraction reagent and purification procedure were selected to develop a simple and effective pre-treatment protocol. The effects of the chromatographic column, mobile phase, and fragmentation voltage on the separation and sensitivity of the 86 substances were evaluated to determine the optimum instrument conditions. An accurate mass database and fragment ion library were created for the rapid qualitative and quantitative analysis of the 86 illegally added chemicals in fishery drugs. The retention time, isotopic abundance and spacing, and precise mass of the principal diagnostic ion for each analyte were used for identification. The information on the fragment ions obtained from the target MS/MS profiles was compared with that from a database to ensure the accuracy of the qualitative results. The chromatographic peak area of each target analyte was used for quantification. The analytical detection was based on the retention time deviation of ±0.35 min, accurate mass deviation of ±10×10-6, and major adduct forms, including [M+H]+, [M+Na]+, and [M+NH4]+. To evaluate the matrix effects of the 86 target chemicals at varied dilution ratios, two types of antibiotics and four types of Chinese herbal medicines were selected as typical samples. Considering the instrument tolerance as well as sensitivity and accuracy of the procedure, the recommended dilution ratios for antibiotics and Chinese herbal medicines were 50 times and 10 times, respectively. Two different types of calibration curves were prepared; one was the solvent calibration curve for antibiotics and the other was the matrix calibration curve for Chinese herbal medicines. For a given concentration, the calibration curves of the 86 target chemicals were linear with correlation coefficients of at least 0.99. The recoveries ranged from 76.8% to 112.1% with relative standard deviations (RSDs) (n=3) of less than 11.7%. The limit of quantification (LOQ) ranges of the compounds in Chinese herbal medicines and antibiotics were 1-15 mg/kg and 5-75 mg/kg, respectively. To evaluate the screening detection limits (SDLs) of each compound, a mixed standard solution was added to a fishery drug sample at varied concentrations. The SDL ranges of the compounds in Chinese herbal medicines and antibiotics were 1-15 and 5-50 mg/kg, respectively. This approach resulted in SDLs that satisfy the actual screening requirements. Because of its rapid nature, simplicity, accuracy, and sensitivity, the method may be used in the high-throughput screening and identification of illegally added chemicals in many types of fishery drugs. This method was applied to a monitoring project for the quality and safety of fishery inputs in Zhejiang Province. Sixty fishery drug samples were evaluated, among which eight Chinese herbal medicine samples were found to contain unspecified ingredients and one antibiotic sample was found to be free of any active substances. Thus, an effective technical method to monitor the quality and safety of fishery drugs was developed.

    Ultra-high performance liquid chromatography-orbitrap high-resolution mass spectrometry for rapid screening and identification of 32 illegally added drugs in slimming and anti-impotence health foods
    XU Hongbin, ZHANG Shenping, DU Ruyun, ZHOU Jing, WENG Shiyu
    2022, 40 (6):  531-540.  DOI: 10.3724/SP.J.1123.2021.12009
    Abstract ( 182 )   HTML ( 97 )   PDF (581KB) ( 136 )  

    A novel method based on ultra-high performance liquid chromatography-orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) was developed for the rapid screening and confirmation of 32 illegally added drugs in slimming and anti-impotence health foods. In addition, the key points of the database establishment and application are summarized. This research focused on the derivatives of illegally added drugs. An HRMS database was established by comparing the response intensity of each compound in the positive and negative modes. The experimental conditions such as the type of extraction solvent and chromatographic column temperature were explored in detail. The analytes were separated on a Hypersil gold vanquish column (100 mm×2.1 mm, 1.9 μm) by gradient elution with acetonitrile/water (containing 0.1%(v/v) formic acid) as the mobile phase at a flow rate of 0.3 mL/min. Positive and negative ion full scanning/data-dependent secondary scanning mode was used to collect the 32 target compounds within 17 min, and TraceFinder software was used to screen the fragment ions. All the 32 compounds could be well separated within 17 min. The measured and theoretical values of the exact mass of the 32 compounds in the two matrix-spiked solutions were within an error of 5×10-6, and the MS2 fragment ions were within an error of 1×10-5. All the compounds showed an excellent linear relationship, with correlation coefficients (r2) above 0.99. Except dapoxetine, hydroxythiohomo sildenafil, thiohomo sildenafil, thiosildenafil, desmethyl thiosildenafil, the recoveries ranged from 50.5% to 84.5% in the solid matrix, with the relative standard deviations (RSDs) ranging from 1.2% to 13%. The recoveries were 60.4% to 109.3% in the liquid matrix, with the RSDs ranging from 0.77% to 8.2%. The matrix effect (ME) values of the 32 compounds ranged from 0.61 to 0.95 in the solid matrix and from 0.73 to 1.09 in the liquid matrix. Thiohomo sildenafil, desmethyl thiosildenafil, and chlorpretadalafil exhibited strong matrix inhibitory effects in the solid matrix. Therefore, solid and liquid negative matrix extracts were used to prepare a series of mixed standard solutions in order to reduce the ME values. The limits of detection (LODs) were 0.02 mg/kg for the 32 drugs in the liquid sample and 0.02 mg/kg for 29 compounds in the solid sample; the LODs for chlorothalidone, udenafil, and desmethyl thiosildenafil in the solid sample were 0.04 mg/kg. When the retention time in the self-built database matches the sample collection method, it should be used as one of the screening conditions. As for the selection of the matching mode, if the identify mode is selected, the retention time is a necessary condition for compound confirmation. When the retention time does not meet the requirements, subsequent screening of the fragment ions and isotope abundance ratios will not be performed. If the confirm mode is selected, the retention time is the optional condition for compound confirmation. When the retention time does not meet these requirements, subsequent matching of other conditions such as fragment ions and isotope information is required. Isotope information is very important in HRMS and is an effective supplement to the first-order extracted mass. Therefore, its use is recommended, but the isotope abundance ratio will be even lower when the target content is very low in the complex matrix, which may affect isotope matching. In addition, if the fragment ions are not detected in the screening results of the TraceFinder software but can be extracted in the data browser, their intensity threshold in the screening conditions can be further reduced to find the corresponding fragment ions. One positive sample was detected among 48 healthy food samples, with a detection rate of 2.08%. This method has the advantages of simple operation and high accuracy. It can be used for the rapid screening and confirmation of 32 illegally added drugs in slimming and anti-impotence health foods.

    Screening of serum oxysterol biomarkers for colon cancer by liquid chromatography-tandem mass spectrometry
    MA Zhanjun, LI Zhenguo, WANG Huan, WANG Renjun, HAN Xiaofei
    2022, 40 (6):  541-546.  DOI: 10.3724/SP.J.1123.2022.01001
    Abstract ( 161 )   HTML ( 94 )   PDF (1709KB) ( 86 )  

    Colon cancer (CC) is one of the most common malignant tumors worldwide. As there are no effective biomarkers for the early diagnosis and intervention tracking, the incidence of CC is increasing every year. Cholesterol is an important component of cell membrane, and it has been shown to be associated with CC. Oxysterol is an oxidized derivative of cholesterol, which plays an important role in many malignant tumors. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine serum cholesterol and ten oxysterol metabolites related to cholesterol in CC patients and healthy controls, and qualitative and quantitative analyses were carried out. Raw data were processed and analyzed using GraphPad Prism 8.3.0 and the MetaboAnalyst 5.0 platform (https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml). To perform the independent sample t-test, it was necessary to ensure that all the sample data followed a normal distribution; therefore, the normal distribution test was performed in advance. The Mann-Whitney U test, which is a nonparametric test, was adopted for samples without a normal distribution. For the processed data, we used the statistical analysis function module of the MetaboAnalyst 5.0 platform to perform partial least-square discriminant analysis (PLS-DA) and orthogonal partial least-square discriminant analysis (OPLS-DA). Both PLS-DA and OPLS-DA are supervised discriminant analysis methods. The OPLS-DA model is based on the PLS-DA model and eliminates variables that are unrelated to the experiment. In both models, the samples from the two groups were well separated by the score plot. In the PLS-DA model, the horizontal and vertical coordinates of the score plot represent the interpretation rates of the principal components of the model. The horizontal coordinates show the differences between groups, and the vertical coordinates show the differences within groups. In addition to the score plot in the PLS-DA model, another crucial factor is variable importance in the projection (VIP). When VIP>1, the compound makes an important contribution to the model and is also used as a criterion for screening differential metabolites. Based on 10-fold cross-validation (CV) of the PLS-DA model, the performance of the model was the best when the number of components was three. To avoid overfitting of the data, three metabolic markers were selected by using not only the VIP values of metabolites of the PLS-DA model, but also the optimal compositions and K-mean clusters. The three biomarkers were 4β-hydroxycholesterol (4β-OHC), cholestane-3β,5α,6β-triol (Triol), and cholesterol. A receiver operating characteristic (ROC) curve was constructed. The area under the curve (AUC) was generally between 0.5 and 1.0. In the case of AUC>0.5, the closer the AUC is to 1, the better is the performance of the model. In this study, the area under the ROC curve constructed jointly by the three metabolic markers was 0.998, indicating that their combined ability to predict CC was strong and that the diagnostic performance was excellent. In addition, to understand the role of the three metabolic markers in the pathogenesis of CC, the genes associated with the metabolic markers were identified using GeneCards (https://www.genecards.org/). Finally, 110 genes were identified. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the biological processes, metabolic pathways, and possible roles in the body. GO enrichment showed that the three markers are mainly distributed in the endoplasmic reticulum lumen and coated vesicles, and they are mainly involved in biological processes such as cholesterol metabolism, transportation, and low-density lipoprotein particle remodeling. Their molecular functions are cholesterol transfer activity and low-density lipoprotein particle receptor binding. KEGG pathway analysis showed that biomarkers are enriched in steroid biosynthesis, PPAR (peroxisome proliferator-activated receptor) signaling pathways, and ABC (ATP-binding cassette) transport pathways. The results of this study are helpful to understand the role of cholesterol and oxysterol in the pathogenesis of CC and to elucidate the pathogenesis of CC.

    Preparation and chromatographic performance of cardanol-bonded silica stationary phase
    ZENG Lei, JIANG Lijuan, YAO Xingdong, WANG Ting, SHI Bo’an, LEI Fuhou
    2022, 40 (6):  547-555.  DOI: 10.3724/SP.J.1123.2021.12023
    Abstract ( 147 )   HTML ( 92 )   PDF (1520KB) ( 125 )  

    As green, less toxic, widely available, and site-rich functional ligands, natural products are widely used for the development of chromatographic stationary phases. In this work, a novel stationary phase, cardanol-bonded on silica (CBS) was prepared using γ-glycidoxypropyltrimethoxysilane (KH-560) as the coupling reagent and cardanol as the functional ligand. The synthesized stationary phase was characterized by Fourier transform-infrared spectra (FT-IR), thermogravimetric analysis (TGA), elemental analysis (EA), and N2 adsorption-desorption analysis. The results revealed that cardanol was successfully immobilized on the surface of spherical silica by the ring-opening reaction of the epoxy groups in phenolic hydroxyl. The retention mechanism and chromatographic performance of the CBS column were further evaluated and compared with those of a commercial C18 column using different classes of analytes, e. g., Tanaka standard test mixtures, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), phenols, and aromatic positional isomers. The retention of alkylbenzenes under different chromatographic conditions revealed that the CBS column was a typical reversed-phase liquid chromatographic column, similar to the commercial C18 column. From the results of the Tanaka test, it was concluded that CBS could provide various interactions for different solutes e. g., hydrogen bonding and π-π interactions, along with hydrophobic interactions. The synergistic effects resulting from the aromatic rings, the hydroxyl and alkyl linkers in the new stationary phase improved the separation selectivity via multiple retention mechanisms. Based on these interactions, different solute probes such as hydrophobic alkylbenzenes, PAHs, and phenols were successfully separated in the reversed-phase liquid chromatography (RPLC) mode. For example, the aromatic positional isomers o-terthenyl, m-terphenyl, and triphenylene were used to investigate the chromatographic performance of the CBS column. These PHAs were baseline separated with good peak shapes. The resolution of m-terphenyl and triphenylene was as high as 6.81, while the two isomers could not be separated on the C18 column under the same chromatographic conditions. The repeatability and column stability of the CBS column was evaluated, and excellent repeatability and column stability were observed. The relative standard deviations (RSDs) of the retention time, peak area, and peak height for alkylbenzenes with 10 replicate injections were 0.052%-0.079%, 0.104%-0.847%, and 0.081%-0.272%, respectively. Traditional Chinese medicines have contributed notably to the Chinese civilization and human health. However, the complicated chemical compositions, unclear medicinal action mechanisms, and low purification efficiency for the traditional Chinese medicines have limited further development. Therefore it is necessary to establish an efficient, simple and feasible method for the separation and purification of herbal medicines. HPLC has been widely used in traditional Chinese medicines for the separation and detection of various components. In order to explore the CBS column for analysis of the traditional Chinese medicines, the ethanol extracts of fruits of Evodiae fructus and Camptotheca acuminata were used to test the separation performance of this column. The resolution of camptothecin from the preceding and following impurity peaks was 4.23 and 2.71. The resolution between evodiamine and rutaecarpin was 5.43, while the resolution from the adjacencies of impurity peaks was 2.20 and 1.69, respectively. The above mentioned results indicated that the CBS column shows good separation performance for the main active ingredients in the ethanolic extracts of these drugs, this validating its great potential for the analysis of real samples. Overall, the present study not only provides a new approach for the preparation of chromatographic stationary phases but also opens a new possibility for the separation and purification of camptothecin and evodiamine in real samples. This is an extension of the application of cardanol to chromatographic separation materials.

    Utilization of UiO-66-NH2@cellulose hybrid aerogel for solid-phase extraction of sildenafil in health products
    CHEN Zhifan, WU Yeyu, TAN Xuecai, MENG Jianqing, CEN Jie, LIU Min
    2022, 40 (6):  556-564.  DOI: 10.3724/SP.J.1123.2021.11022
    Abstract ( 196 )   HTML ( 84 )   PDF (3709KB) ( 115 )  

    Sildenafil is a prescription drug used to treat pulmonary hypertension and erectile dysfunction. However, the illegal addition of sildenafil to health supplements may be hazardous to human health. Therefore, it is imperative to develop a method for the detection of sildenafil in health products. Solid-phase extraction (SPE) is typically used for the separation, purification, and enrichment of samples, with the aim of reducing the matrix interference of the samples and improving the detection sensitivity. SPE is widely employed in the detection of trace compounds in complex samples. Metal-organic frameworks (MOFs) are hybrid crystalline materials composed of metal ions and organic ligands. MOFs offer the advantages of a large specific surface area, permanent nanopores, good stability, and pore controllability. Owing to their advantages, researchers have attempted to use MOFs for SPE; however, it is difficult to collect MOFs in the powder form when they are directly used in SPE, necessitating the use of a substrate material to fix the MOFs. Hence, this study proposes a novel SPE method with high sensitivity that employs a UiO-66-NH2@cellulose hybrid aerogel, for the detection of sildenafil in health products. First, UiO-66-NH2 was synthesized by a hydrothermal method. Cellulose nanocrystal (CNC) was modified with an aldehyde group to obtain CNC-CHO, and carboxymethyl cellulose (CMC) was modified with a hydrazide group to obtain CMC-NHNH2. Subsequently, UiO-66-NH2 was added to the CNC-CHO solution, mixed with the CMC-NHNH2 solution, and then crosslinked to load UiO-66-NH2 and form a hybrid aerogel as a bulk adsorbent. This bulk hybrid aerogel could be collected easily without extra force for use in SPE. The synthesized hybrid aerogel was characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform-infrared (FT-IR) spectroscopy, and nitrogen gas adsorption/desorption. The results showed that UiO-66-NH2 was successfully loaded on the pore surface of the hybrid aerogel, which made the pore of aerogel become more regular and a larger surface area. Investigation of the loading amount of UiO-66-NH2 in the hybrid aerogel revealed that a higher amount of UiO-66-NH2 could yield better extraction efficiency. The highest amount of UiO-66-NH2 that could be loaded in the hybrid aerogel was 50%. The experimental conditions affecting the enrichment of sildenafil were optimized, and determined to be the following: pH of the sample, 9.0; extraction time, 60 min; eluent, acetonitrile; elution time, 40 min; elution volume, 3×2 mL; salt ion concentration, 0. Separation was performed on an Agilent Zorbax Eclipse Plus C18 column (150 mm×4.6 mm, 5 μm) with a phosphate solution containing 0.1 mol/L triethylamine (pH=6.50)-acetonitrile (30∶70, v/v) as the mobile phase. The detection wavelength was set at 292 nm. Under the optimal conditions, the UiO-66-NH2@cellulose hybrid aerogel was used as an adsorbent to extract sildenafil in different concentrations. The peak area was proportional to the sildenafil concentration in the range of 10-2000 ng/mL, with limit of detection (LOD, S/N=3) of 2.85 ng/mL and enrichment factor of 59.17. The correlation coefficient (R2) was 0.9950. Compared to previous preconcentration methods for sildenafil, this method offered a wider linear range. Five batches of hybrid aerogels were simultaneously prepared under the same conditions and used to extract sildenafil; the relative standard deviation (RSD, n=3) was 1.71%, indicating that the prepared hybrid aerogels offered good reproducibility. The used composite aerogels were freeze-dried again and reused to extract sildenafil; the recovery was still maintained at 85.23% after five extraction cycles, indicating that the UiO-66-NH2@cellulose hybrid aerogel had good regeneration ability. The feasibility of the developed method was verified by analyzing five health products. The results demonstrated the presence of 3.01 μg/g sildenafil in one of the products and no sildenafil in the others. The recoveries of this SPE method ranged from 74.93% to 89.12%, with RSDs in the range of 2.8%-5.3%, proving the feasibility of this analytical method.

    Rapid screening of 84 pesticide residues in dendrobium by Sin-QuEChERS Nano purification column with gas chromatography-tandem mass spectrometry
    ZHANG Quan, BI Shan, WU Yutian, LI Lei, ZHOU Yibing, LIU Liya, LIU Wenzheng, CHEN Qingyuan, ZHOU Xue, GUO Hua
    2022, 40 (6):  565-575.  DOI: 10.3724/SP.J.1123.2021.12010
    Abstract ( 199 )   HTML ( 109 )   PDF (1775KB) ( 180 )  

    A rapid screening method for 84 pesticide residues in dendrobium perfringens parent material with different polarities was developed using a Sin-QuEChERS Nano clean-up column combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). The differences in extraction efficiency of the targets were compared with different extraction solvents (acetonitrile containing 1% acetic acid, acetone) and methods (immersion with or without water). The purification effect and extraction recoveries of Sin-QuEChERS Nano method and classical dispersive solid-phase extraction (dSPE), solid-phase extraction (SPE) and QuEChERS were systematically compared using Dendrobium nobile samples. The differences in matrix effects between the Sin-QuEChERS Nano method, which was more effective in purification, and the dSPE method were also analyzed. The purification effects of three commercially available Sin-QuEChERS Nano purification columns (simple matrix purification column, complex matrix purification column and herbal purification column) were compared. The applicability of the purification methods were also verified by using different parts of Dendrobium nobile samples (stems, leaves and flowers). From the results, it could be concluded that weighing 2.00 g and the samples in 5 mL of water for 20 min, followed by extraction with acetonitrile containing 1% acetic acid was more effective. The average extraction recovery of the target components by Sin-QuEChERS Nano purification method was 90.5%, which further identified Sin-QuEChERS Nano-Chinese medicine purification column as the preferred purification column for dendrobium purification. The target components were separated by a DB-1701MS quartz capillary column (30 m×0.25 mm×0.25 μm) with programmed temperature rise, detected by multiple reaction monitoring (MRM) mode, and quantified by matrix-matched solution external standard method. The GC-MS/MS assay was used for the methodological validation of the 84 representative pesticides within Dendrobium officinale and Dendrobium nobile was carried out by GC-MS/MS detection method. The results indicated that the targets showed excellent linear correlation in different scopes with correlation coefficients (r2) >0. 990. The limits of detection (LODs, S/N=3) of the method were 1.5 to 5.8 μg/kg, and the limits of quantification (LOQs, S/N=10) ranged from 5.0 to 15.0 μg/kg. The spiked recoveries of the target pesticides under different spiked levels were 68.7%-116.2%, and the relative standard deviations (RSDs, n=6) were less than 15%. Compared to other typical pretreatment methods, the Sin-QuEChERS Nano method provided better performance in terms of purification. The method not only effectively removed pigments, organic acids, and alkaline interferents, but also saved preparation time. Losses due to solvent transfer were also avoided and no further vortexing or centrifugation was required, making it a simplified and effective extraction and purification procedure. The method was sensitive, rapid, simple and reliable. It effectively improved the detection efficiency during the rapid screening of pesticides in dendrobium and presented a strong practical application value. In addition, the developed method could further expand the types of target pesticides and could be used to detect more pesticide residues in foods and Chinese herbal medicine. The established Sin-QuEChERS Nano method was used for the analysis of authentic samples. The applicability of the method was evaluated by analyzing a total of 80 samples collected from Anlong, Libo, Dushan, and Yanhe County in Guizhou Province. The types of samples included dendrobium maple, Dendrobium nobile (flowers, stems, leaves) and Dendrobium officinale (flowers, stems, leaves, powder, tablets). At least one pesticide residue was detected in 12 samples, with a detection rate of 15%. The five pesticides with higher detection rates and residues were chlorpyrifos (0.08-0.5 mg/kg), chlorothalonil (0.06-3.2 mg/kg), propanil zinc (0.03-0.15 mg/kg), methyl parathion (0.04-0.23 mg/kg) and cyhalothrin (0.10-2.68 mg/kg). Except for the pesticides in maximum residue limits (MRLs), the pesticide residues detected from dendrobium samples were below the limits set by Chinese national standard (GB 2763-2021) and local standard DBS 52/048-2020.

    Simultaneous determination of seven dimethylcyclosiloxanes in cosmetics of different formulation systems by gel permeation chromatography purification-gas chromatography-tandem mass spectrometry
    XIAO Gengpeng, YUAN Lu, LUO Chunli, LUO Xiang, HUANG Yousheng
    2022, 40 (6):  576-583.  DOI: 10.3724/SP.J.1123.2021.11024
    Abstract ( 163 )   HTML ( 96 )   PDF (938KB) ( 93 )  

    At present, the addition of dimethylcyclosiloxanes (DMCs) in cosmetics is being debated and no substantial progress has been made in their safety risk assessment because of the lack of a suitable analytical method. Therefore, it is of theoretical and practical significance to establish a method suitable for the determination of DMCs in cosmetics with different formulation systems. Accordingly, a method based on gel permeation chromatography (GPC) purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the determination of seven DMCs in cosmetics. The cosmetic samples were extracted by ethyl acetate-cyclohexane (1∶1, v/v), purified by gel permeation chromatography, separated on a DB-5ms column (30.0 m×0.25 mm×0.25 μm), confirmed and detected by gas chromatography-tandem mass spectrometry in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with n-hexadecane as the internal standard. Experiments were carried out using n-tetradecane, n-hexadecane, and n-octadecane as the internal standards, and based on the retention time in GPC and GC, n-hexadecane was found to be the suitable choice for further analyses. The extraction efficiency for the target compounds was tested in different solvents such as methanol, n-hexane, acetonitrile, ethyl acetate, and ethyl acetate-cyclohexane (1∶1, v/v). Given the high recovery, ethyl acetate-cyclohexane (1∶1, v/v) was selected as the extraction solvent for analyses. Among the three purification methods (analysis without purification, solid-phase extraction (SPE), and GPC purification), GPC was selected as the best method because of the minimal matrix interference to the target compounds. Under the optimized conditions, the seven DMCs showed good linearities in the range of 0.05-1.0 mg/L. The correlation coefficients (r) were 0.994-0.998, which were greater than the required of the specification (r≥0.990). The limits of detection (LODs, S/N=3) were 0.04-0.08 mg/kg, and the limits of quantification (LOQs, S/N=3) were 0.12-0.24 mg/kg. According to the cosmetic matrix in different formulation systems, standard addition recovery tests at three levels of low, medium, and high were carried out. The average recovery rates of the targets were 85.3%-108.8%. The relative standard deviations (RSDs, n=6) were 3.1%-9.4%. The established method was also employed for the analysis of cosmetics in the market, and octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) were detected at various levels in the cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, and good reproducibility, and it allows for the determination of seven DMCs in cosmetics with different formulation systems. The establishment of this method provides a basis for the quality supervision and inspection of DMCs in cosmetics in China, in addition to providing technical support for follow-up health and safety evaluation.

    Determination of four trihalomethanes in ship ballast water by gas chromatography-negative chemical ionization-mass spectrometry
    HU Guoshen, WANG Hong, YU Keyao, SHEN Weijian, HOU Yan, JI Meiquan, ZHU Yiming, TIAN Wen, LI Xidong
    2022, 40 (6):  584-589.  DOI: 10.3724/SP.J.1123.2022.01003
    Abstract ( 172 )   HTML ( 92 )   PDF (476KB) ( 79 )  

    Ship ballast water can control the roll, trim, and draft of the ship, and thus ensuring the balance and stability of the ship in the course of sailing, and playing a vital role in the safe navigation of ships. The annual discharge of ship ballast water is very large in China. About three to five billion cubic meters of ship ballast water is discharged into offshore or inland waters every year. This water contains plankton, pathogens, and their larvae or spores. If not be handled appropriately, this will have a serious impact on the ecological environment of the discharge waters. Ballast water is usually treated by electrolysis before being discharged. Sodium hypochlorite can be generated, which can kill microorganisms; however, the by-products trihalomethanes (THMs) are cytotoxic and biotoxic. Studies have shown that THMs may cause fetal growth retardation, spontaneous abortion, or death. The concentration of THMs in drinking water is closely related to the risk of bladder cancer death. Hence, it is important to establish a method for the determination of THMs in ship ballast water. The four kinds of THMs are chloroform, dichlorobromomethane, chlorodibromomethane, and tribromomethane. At present, ship ballast water is mostly analyzed by gas chromatography (GC) using an electron capture detector (ECD) or by gas chromatography-mass spectrometry (GC-MS). Given the low boiling point of THMs, headspace injection and purge-and-trap can be used. Gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS), was adopted. NCI is a soft ionization technique that shows special response to compounds bearing electronegative elements or groups. THMs contain electronegative chlorine atoms and bromine atoms. Therefore, NCI is a good choice for their analysis. The samples were processed by the headspace injection technique. The NaCl content in 10 mL sample was optimized in headspace injection. The results showed that 3.0 g NaCl was the most suitable dosage. The analytes were separated on a DB-5MS UI capillary-column (30 m×0.25 mm×1.0 μm). The target compounds were quantified by using the external standard method in selected ion monitoring (SIM) mode. The four THMs were not only well separated but also showed a high response at 0.2 μg/L. The four THMs showed good linear relationships in the range of 0.2-50 μg/L, with correlation coefficients≥0.995. The limits of quantification (LOQs, S/N=10) were 0.1-0.2 μg/L, and the average recoveries of the four THMs were 90.3%-106.8% at the three spike levels of 0.2, 0.5, and 2.0 μg/L. The relative standard deviations were 1.4%-6.2%. The LOQs of the THMs in the GB/T 5750.8-2006 Standard Test Method of Drinking Water Organic Matter Index are 0.3-6.0 μg/L. It can be seen that the LOQs of the THMs are greatly reduced in this study. The proposed method is accurate, stable, and reliable, and it can be used for monitoring the four THMs in ship ballast water. The method was applied for the detection of 36 ship ballast water samples. In all cases, the detection rates of tribromomethane, chlorodibromomethane, dichlorobromomethane, and chloroform were 83.3%, 69.4%, 22.2%, and 19.4%, respectively. The detection values of tribromomethane, chlorodibromomethane, dichlorobromomethane, and chloroform were 34.25-221.5 μg/L, 3.52-41.87 μg/L, 1.52-8.56 μg/L, and 0.02-5.46 μg/L, respectively. Based on the analysis of several ship ballast water samples (electrolytic water), it was concluded that the greater the number of bromine atoms in the THMs, the higher are the detection rate and detection value in ship ballast water. Compared to chloroform, tribromomethane is more harmful to living beings. China has acceded to the International Convention on Ship Ballast Water and Sediment Control and Management. There is an urgent need to establish analysis methods with high sensitivity, good stability, and high accuracy in addition to determining standards and regulations for ship ballast water.