色谱 ›› 2022, Vol. 40 ›› Issue (3): 213-223.DOI: 10.3724/SP.J.1123.2021.07009

• 专论与综述 • 上一篇    下一篇

微流控芯片系统在循环肿瘤细胞分离检测中的应用进展

曹荣凯1,2, 张敏1,2, 于浩1, 秦建华1,2,*()   

  1. 1.中国科学院大连化学物理研究所, 辽宁 大连 116023
    2.中国科学院大学, 北京 100049
  • 收稿日期:2021-07-20 出版日期:2022-03-08 发布日期:2022-03-04
  • 通讯作者: 秦建华
  • 基金资助:
    国家重点研发项目(2017YFB0405400);国家自然科学基金项目(21607151);国家自然科学基金项目(31671038);国家自然科学基金项目(81803492)

Recent advances in isolation and detection of circulating tumor cells with a microfluidic system

CAO Rongkai1,2, ZHANG Min1,2, YU Hao1, QIN Jianhua1,2,*()   

  1. 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-07-20 Online:2022-03-08 Published:2022-03-04
  • Contact: QIN Jianhua
  • Supported by:
    National Key R&D Program of China(2017YFB0405400);National Natural Science Foundation of China(21607151);National Natural Science Foundation of China(31671038);National Natural Science Foundation of China(81803492)

摘要:

循环肿瘤细胞(CTCs)的分离分析一直是肿瘤相关研究中的热点方向,作为液体活检的重要标志物之一,其在外周血中的含量与癌症病发状况密切相关。然而人体血液中CTCs的含量非常低,通常来说仅有0~10个/mL,因此在开展临床血液样本中CTCs的检测前,往往需要对样本进行前处理,以实现CTCs的分离和富集。微流控芯片技术凭借样品消耗少,分离效率高,易于自动化和集成化等特点,在CTCs分离分析研究中具有诸多优势。近年来,利用微流控芯片开展CTCs分离检测的研究进展迅速,多种技术原理和检测方法相继出现。从技术原理角度进行区分,可分为生物亲和法和物理筛选法。生物亲和法主要依赖抗原抗体相互作用,或核酸适配体与靶标的特异性结合,该方法选择性高,但效率和捕获率偏低。物理筛选法则主要依据细胞本身的物理性质,诸如尺寸、密度和介电性质等差异实现分离。例如,可通过芯片微结构对CTCs进行阻隔或捕获,通过外加物理场(声、电、磁)辅助分选,也可以利用微观尺度流体力学作用对混合细胞进行筛分。物理筛选法一般通量较高,但往往分离纯度较低。同时,利用微流控芯片的集成优势将两种方法相结合,往往能得到更好的分离效果。除了以CTCs作为直接目标的正向富集外,还可以采取反向富集的策略,通过将作为干扰项的白细胞等作为靶标进行选择性地去除,可以避免直接筛选方式对CTCs细胞活性产生的影响。该文概述性介绍了利用微流控芯片开展循环肿瘤细胞分离检测的技术原理、芯片原位检测方法和研究进展,并结合现阶段存在的问题对其未来发展趋势予以展望。

关键词: 微流控芯片, 循环肿瘤细胞, 分离检测

Abstract:

The isolation and analysis of circulating tumor cells (CTCs) is an important issue in tumor research. CTCs in peripheral blood, which are important biomarkers of liquid biopsy, are closely related to the occurrence of cancer and are used to monitor the effect of treatment on cancer patients. However, the number of CTCs in the blood samples of cancer patients is very low, usually being present at only 0-10 CTCs/mL. Therefore, prior to the detection of CTCs, it is important to preprocess clinical blood samples for efficient separation and enrichment. With the advantages of low sample consumption, high separation efficiency, ease of automation and integration, microfluidic chips can be a suitable platform for the isolation of CTCs. In the last few years, CTC separation and detection using microfluidic chips have developed rapidly, and a variety of detection methods have been developed. According to the technical principle used, microfluidics for CTC separation can be divided into biological property-based methods and physical property-based methods. The biological property-based methods mainly depend on the interaction between the antigen and antibody, or the specific binding of the aptamer and target. These methods have high selectivity but low efficiency and recovery rates. Physical separation is based on the physical properties of CTCs such as their size, density, and dielectric properties. For example, CTCs can be blocked or captured by the microstructure in the channels of microfluidic chips, sorted by external physical fields (acoustic, electrical, magnetic), or screened by micro-scale hydrodynamics. Physical property-based methods generally have a higher flux but lower separation purity. However, the advantages of biological property-based methods and physical property-based methods can be integrated to provide microfluidic chips having better separation performance. In addition to the direct positive enrichment of CTCs, a negative enrichment strategy can also be adopted. The influence of direct screening on the activity of CTCs can be avoided by selectively removing white blood cells. In this paper, recent advances in microfluidics utilized in the isolation of CTCs, including physical and immune methods and positive and negative enrichment, are reviewed. We summarized the technical principles, detection methods, and research progress in CTC separation and detection using microfluidic chips. Developing trends in microfluidics for CTC separation and analysis are also discussed.

Key words: microfluidics, circulating tumor cells (CTCs), separation and detection

中图分类号: