色谱 ›› 2025, Vol. 43 ›› Issue (5): 498-507.DOI: 10.3724/SP.J.1123.2025.01025
黄雨霞1, 王海燕2, 张屹涵1, 蔺奕菲1, 乔晓强2,*(), 胡良海1,*(
)
收稿日期:
2025-01-19
出版日期:
2025-05-08
发布日期:
2025-05-07
通讯作者:
*Tel:(0312)5073196,E-mail:基金资助:
HUANG Yuxia1, WANG Haiyan2, ZHANG Yihan1, LIN Yifei1, QIAO Xiaoqiang2,*(), HU Lianghai1,*(
)
Received:
2025-01-19
Online:
2025-05-08
Published:
2025-05-07
Supported by:
摘要:
外泌体是细胞分泌的细胞外囊泡的一种亚型,携带丰富的遗传物质及蛋白质等,外泌体膜表面有众多母细胞特有的标志物,已成为疾病诊断、疾病进展以及疾病治疗的重要依据。本文在Web of Science core collection(SCI-EXPENED)数据库中,检索2010-2024年间研究主题为“外泌体”与“生物标志物”或“诊断”或“液体活检”的研究型和综述类论文。文献计量分析结果显示,外泌体作为生物标志物标记疾病的研究关注度逐渐升高,中国是该研究的主要贡献国家;文献主要围绕癌症、炎症、糖尿病、神经退行性疾病和心血管疾病的标记诊断展开研究;通常使用色谱、质谱、拉曼光谱等技术分析外泌体核酸、蛋白质、代谢物等;常用的检验样本为血浆、血清、尿液、唾液、脑脊液等体液;外泌体作为肿瘤标志物的研究主要聚焦于肺癌、乳腺癌、前列腺癌等8种具有高发病率的癌症。本文聚焦于外泌体作为疾病生物标志物的研究领域,利用文献计量工具系统分析了2010-2024年间外泌体及其内容物作为生物标志物在疾病诊断领域中的应用,并对外泌体介导的疾病诊断和疾病治疗的发展前景和未来努力方向进行了分析和展望,期望为外泌体在疾病标志及应用方面的研究提供参考。
中图分类号:
黄雨霞, 王海燕, 张屹涵, 蔺奕菲, 乔晓强, 胡良海. 外泌体在生物标志物研究领域的文献计量学分析[J]. 色谱, 2025, 43(5): 498-507.
HUANG Yuxia, WANG Haiyan, ZHANG Yihan, LIN Yifei, QIAO Xiaoqiang, HU Lianghai. Bibliometric analysis of exosomes in the biomarker research field[J]. Chinese Journal of Chromatography, 2025, 43(5): 498-507.
Country | Post volume | Percentage/ % | Average cited | Institution | Post volume | Percentage/ % | Average cited |
---|---|---|---|---|---|---|---|
China | 6084 | 37.3 | 32 | Shanghai Jiao Tong University | 339 | 2.0 | 37 |
United States | 3987 | 24.5 | 57 | Nanjing Medical University | 302 | 1.8 | 44 |
Italy | 1320 | 8.1 | 38 | Fudan University | 290 | 1.7 | 33 |
Germany | 969 | 5.9 | 46 | Chinese Academy of Sciences | 229 | 1.4 | 38 |
Spain | 737 | 4.5 | 46 | Harvard Medical School | 229 | 1.4 | 64 |
Japan | 733 | 4.5 | 41 | Zhejiang University | 208 | 1.2 | 39 |
England | 703 | 4.3 | 48 | Central South University | 207 | 1.2 | 24 |
Korea | 627 | 3.8 | 38 | Southern Medical University | 192 | 1.2 | 36 |
Australia | 577 | 3.5 | 57 | Shandong University | 191 | 1.1 | 39 |
India | 565 | 3.5 | 21 | Capital Medical University | 187 | 1.1 | 29 |
表1 2010-2024年发文量排名前十的国家与机构
Table 1 Top ten countries and institutions in terms of the number of published papers from 2010 to 2024
Country | Post volume | Percentage/ % | Average cited | Institution | Post volume | Percentage/ % | Average cited |
---|---|---|---|---|---|---|---|
China | 6084 | 37.3 | 32 | Shanghai Jiao Tong University | 339 | 2.0 | 37 |
United States | 3987 | 24.5 | 57 | Nanjing Medical University | 302 | 1.8 | 44 |
Italy | 1320 | 8.1 | 38 | Fudan University | 290 | 1.7 | 33 |
Germany | 969 | 5.9 | 46 | Chinese Academy of Sciences | 229 | 1.4 | 38 |
Spain | 737 | 4.5 | 46 | Harvard Medical School | 229 | 1.4 | 64 |
Japan | 733 | 4.5 | 41 | Zhejiang University | 208 | 1.2 | 39 |
England | 703 | 4.3 | 48 | Central South University | 207 | 1.2 | 24 |
Korea | 627 | 3.8 | 38 | Southern Medical University | 192 | 1.2 | 36 |
Australia | 577 | 3.5 | 57 | Shandong University | 191 | 1.1 | 39 |
India | 565 | 3.5 | 21 | Capital Medical University | 187 | 1.1 | 29 |
Cluster | Keywords* |
---|---|
#0 colorectal cancer | miR-21; signaling pathway; metabolism; mesenchymal stem cell; long non-coding RNA therapeutic target; tumor associated macrophages; macrophage polarization; phenotype; outer membrane vesicles; non-coding RNAs; tumor suppressor; fibroblasts; noncoding RNA; chemoresistance; cisplatin resistance; NF kappa-B; promote; microRNA expression; diagnostic biomarker; RNAs; autophagy; squamous cell carcinoma; poor prognosis; macrophages; prognostic biomarker; long noncoding RNAs; mesenchymal transition; tumor-microenvironment; circular RNAs; up regulation; roles; potential biomarkers; inhibition; long noncoding RNA; cancer cells; noncoding RNAs; epithelial mesenchymal transition; pathway; drug resistance; carcinoma; cell proliferation; down regulation; promotes; migration; circular RNA; gastric cancer; apoptosis; tumor microenvironment; angiogenesis; resistance; invasion; growth; hepatocellular carcinoma; progression; colorectal cancer; proliferation; metastasis |
#1 liquid biopsy | promote tumor growth; cell derived microparticles; human saliva; smooth muscle cells; rheumatoid arthritis; pregnancy; mesenchymal stromal cells; cancer therapy; serum exosome; endothelial microparticles; horizontal transfer; multivesicular body; urinary exosome; progenitor cells; responses; cancer exosome; tissue; heart failure; tissue factor; intercellular transfer; adipose tissue; tumor growth; emerging role; size; insulin resistance; nanoparticle tracking analysis; myocardial infarction; circulating microparticles; cardiovascular disease; differentiation; pathogenesis; intercellular communication; in vivo; messenger RNAs; flow cytometry; mediated transfer; stromal cells; nanoparticles; T cells; transferrin receptor; tumor derived exosome; endothelial cells; drug delivery; membrane vesicles; delivery; dendritic cells; proteomic analysis; gene expression; inflammation; microparticles; cell derived exosome; in vitro; stem cells; mesenchymal stem cells; extracellular vesicles |
#2 exosome | aptasensor; amplification; heterogeneity; KRAS; exosomal miRNA; chip; women; cell-free DNA; biopsy; tumor cells; mortality; target; nucleic acids; precision medicine; clinical significance; recurrence; DNA methylation; cell lung cancer system; chemotherapy; early diagnosis; mutations; bladder cancer; cancer diagnosis; marker; potential biomarker; cell free DNA; separation; free DNA; classification; management; prognosis; circulating tumor DNA; quantification; peripheral blood; circulating exosome; diagnostic biomarkers; gene; ovarian cancer; risk; survival; blood; pancreatic cancer; messenger RNA; DNA; lung cancer; circulating tumor cells; prostate cancer; breast cancer; liquid biopsy |
#3 extracellular vesicles | progress; glioblastoma; diabetic nephropathy; head; discovery; platform; proteomics; genes; reveals; fibrosis; injury; miRNA; extracellular vesicles (EVs); receptor; exosome isolation; biology; communication; mass spectrometry; miRNAs; release; therapy; markers; mechanisms; mechanism; vesicles; activation; disease; secretion; microRNA; RNA; extracellular vesicle; circulating microRNAs; proteins; protein; serum; biomarker; plasma; biogenesis; diagnosis; identification; microRNAs; cancer; microvesicles; cells; biomarkers; expression; exosome |
#4 Alzheimer’s disease | cognitive impairment; neuronal exosome; Tau; children; infection; dementia; blood brain barrier; multiple sclerosis; binding; dysfunction; amyloid beta; central nervous system; model; cell; small extracellular vesicles; alpha synuclein; association; Parkinson’s disease; brain; oxidative stress; cerebrospinal fluid; Alzheimer’s disease |
#5 plasma diagnostics-interferometry | deposition; density; spectroscopy and imaging; plasma diagnostics-interferometry; temperature; plasma diagnostics; diagnostics |
表2 关键词聚类分析结果
Table 2 Keyword cluster analysis results
Cluster | Keywords* |
---|---|
#0 colorectal cancer | miR-21; signaling pathway; metabolism; mesenchymal stem cell; long non-coding RNA therapeutic target; tumor associated macrophages; macrophage polarization; phenotype; outer membrane vesicles; non-coding RNAs; tumor suppressor; fibroblasts; noncoding RNA; chemoresistance; cisplatin resistance; NF kappa-B; promote; microRNA expression; diagnostic biomarker; RNAs; autophagy; squamous cell carcinoma; poor prognosis; macrophages; prognostic biomarker; long noncoding RNAs; mesenchymal transition; tumor-microenvironment; circular RNAs; up regulation; roles; potential biomarkers; inhibition; long noncoding RNA; cancer cells; noncoding RNAs; epithelial mesenchymal transition; pathway; drug resistance; carcinoma; cell proliferation; down regulation; promotes; migration; circular RNA; gastric cancer; apoptosis; tumor microenvironment; angiogenesis; resistance; invasion; growth; hepatocellular carcinoma; progression; colorectal cancer; proliferation; metastasis |
#1 liquid biopsy | promote tumor growth; cell derived microparticles; human saliva; smooth muscle cells; rheumatoid arthritis; pregnancy; mesenchymal stromal cells; cancer therapy; serum exosome; endothelial microparticles; horizontal transfer; multivesicular body; urinary exosome; progenitor cells; responses; cancer exosome; tissue; heart failure; tissue factor; intercellular transfer; adipose tissue; tumor growth; emerging role; size; insulin resistance; nanoparticle tracking analysis; myocardial infarction; circulating microparticles; cardiovascular disease; differentiation; pathogenesis; intercellular communication; in vivo; messenger RNAs; flow cytometry; mediated transfer; stromal cells; nanoparticles; T cells; transferrin receptor; tumor derived exosome; endothelial cells; drug delivery; membrane vesicles; delivery; dendritic cells; proteomic analysis; gene expression; inflammation; microparticles; cell derived exosome; in vitro; stem cells; mesenchymal stem cells; extracellular vesicles |
#2 exosome | aptasensor; amplification; heterogeneity; KRAS; exosomal miRNA; chip; women; cell-free DNA; biopsy; tumor cells; mortality; target; nucleic acids; precision medicine; clinical significance; recurrence; DNA methylation; cell lung cancer system; chemotherapy; early diagnosis; mutations; bladder cancer; cancer diagnosis; marker; potential biomarker; cell free DNA; separation; free DNA; classification; management; prognosis; circulating tumor DNA; quantification; peripheral blood; circulating exosome; diagnostic biomarkers; gene; ovarian cancer; risk; survival; blood; pancreatic cancer; messenger RNA; DNA; lung cancer; circulating tumor cells; prostate cancer; breast cancer; liquid biopsy |
#3 extracellular vesicles | progress; glioblastoma; diabetic nephropathy; head; discovery; platform; proteomics; genes; reveals; fibrosis; injury; miRNA; extracellular vesicles (EVs); receptor; exosome isolation; biology; communication; mass spectrometry; miRNAs; release; therapy; markers; mechanisms; mechanism; vesicles; activation; disease; secretion; microRNA; RNA; extracellular vesicle; circulating microRNAs; proteins; protein; serum; biomarker; plasma; biogenesis; diagnosis; identification; microRNAs; cancer; microvesicles; cells; biomarkers; expression; exosome |
#4 Alzheimer’s disease | cognitive impairment; neuronal exosome; Tau; children; infection; dementia; blood brain barrier; multiple sclerosis; binding; dysfunction; amyloid beta; central nervous system; model; cell; small extracellular vesicles; alpha synuclein; association; Parkinson’s disease; brain; oxidative stress; cerebrospinal fluid; Alzheimer’s disease |
#5 plasma diagnostics-interferometry | deposition; density; spectroscopy and imaging; plasma diagnostics-interferometry; temperature; plasma diagnostics; diagnostics |
Cluster | Author | Journal | DOI | Most influential paper | Citation |
---|---|---|---|---|---|
#1 | Valadi H | Nature Cell Biology | 10.1038/ncb1596 | Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells | 2620 |
Raposo G | Curr Opin Biotech | 10.1083/jcb.201211138. | Extracellular vesicles: exosomes, microvesicles, and friends | 1840 | |
Skog J | Nat Cell Biol | 10.1038/ncb1800 | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers | 1459 | |
#2 | Théry C | J Extracell Vesicles | 10.1080/20013078.2018.1535750 | Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines | 2380 |
Kalluri R | Science | 10.1126/science. aau6977. | The biology, function, and biomedical applications of exosomes | 1788 | |
Van Niel G | Nat Rev Mol Cell Bio | 10.1038/nrm.2017.125 | Shedding light on the cell biology of extracellular vesicles | 1492 | |
#3 | Melo S A | Nature | 10.1038/nature14581 | Glypican-1 identifies cancer exosomes and detects early pancreatic cancer | 1176 |
Hoshino A | Nature | 10.1038/nature15756 | Tumour exosome integrins determine organotropic metastasis | 1115 |
表3 共被引参考文献网络中各聚类中最有影响力的文献
Table 3 Most influential papers in each cluster of the co-cited reference network
Cluster | Author | Journal | DOI | Most influential paper | Citation |
---|---|---|---|---|---|
#1 | Valadi H | Nature Cell Biology | 10.1038/ncb1596 | Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells | 2620 |
Raposo G | Curr Opin Biotech | 10.1083/jcb.201211138. | Extracellular vesicles: exosomes, microvesicles, and friends | 1840 | |
Skog J | Nat Cell Biol | 10.1038/ncb1800 | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers | 1459 | |
#2 | Théry C | J Extracell Vesicles | 10.1080/20013078.2018.1535750 | Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines | 2380 |
Kalluri R | Science | 10.1126/science. aau6977. | The biology, function, and biomedical applications of exosomes | 1788 | |
Van Niel G | Nat Rev Mol Cell Bio | 10.1038/nrm.2017.125 | Shedding light on the cell biology of extracellular vesicles | 1492 | |
#3 | Melo S A | Nature | 10.1038/nature14581 | Glypican-1 identifies cancer exosomes and detects early pancreatic cancer | 1176 |
Hoshino A | Nature | 10.1038/nature15756 | Tumour exosome integrins determine organotropic metastasis | 1115 |
图4 论文高频关键词的文章数量分布
Fig. 4 Number distribution of high-frequency keywords in papers a. based on analytical techniques; b. based on biomarker types; c. based on disease types; d. based on sample types.
|
[1] | 程显惠, 于文静, 王冬雪, 姜丽艳, 胡良海. 磷脂酰丝氨酸分子印迹聚合物对血浆外泌体的富集与蛋白质组学分析[J]. 色谱, 2025, 43(5): 539-546. |
[2] | 侯国姗, 袁辉明, 梁振, 张丽华, 张玉奎. 外泌体分离富集技术及其在疾病诊疗中的应用[J]. 色谱, 2025, 43(5): 434-445. |
[3] | 陈晓菲, 刘威, 张文镓, 李言鹏, 王志华, 高明霞, 张祥民. 脑脊液外泌体亚群的分离及其蛋白质组学分析[J]. 色谱, 2025, 43(5): 518-528. |
[4] | 徐坤, 黄嫣嫣, 赵睿. 多肽识别导向的外泌体分离富集方法研究进展[J]. 色谱, 2025, 43(5): 446-454. |
[5] | 王海燕, 谢沛涓, 乔晓强, 张丽媛. 基于亲和作用力的外泌体高效分离方法的经典策略和研究进展[J]. 色谱, 2025, 43(5): 413-423. |
[6] | 郑李婷, 杨歌, 屈锋. 外泌体的核酸适配体筛选技术研究进展[J]. 色谱, 2025, 43(5): 424-433. |
[7] | 卜彩婷, 竺雪冬, 张倩颖, 邵文亚. 外泌体在神经退行性疾病中的作用研究进展[J]. 色谱, 2025, 43(5): 487-497. |
[8] | 苏雅婷, 钱小红, 秦伟捷. 脂质体与外泌体在药物递送和生物标志物筛选中的研究进展[J]. 色谱, 2025, 43(5): 472-486. |
[9] | 卜爱香, 武光耀, 胡良海. 单细胞与单颗粒外泌体分离分析进展与展望[J]. 色谱, 2025, 43(5): 399-412. |
[10] | 邢宇航, 任香善, 李东浩, 刘璐. 基于微流控技术的外泌体分离分析及临床应用[J]. 色谱, 2025, 43(5): 455-471. |
[11] | 冯壮壮, 林潇, 包得军, 胡小键, 张海婧, 朱英, 张续. 固相萃取-超高效液相色谱-串联质谱法测定人尿液中4种氧化应激生物标志物[J]. 色谱, 2025, 43(4): 317-325. |
[12] | 徐菲, 刘天平, 关雅今, 郝伟超, 温鼎声, 谢水林, 别亚男. 基于非靶向代谢组学的缺血性脑卒中生物标志物的分析[J]. 色谱, 2025, 43(2): 139-147. |
[13] | 支梦雪, 王建设. 暴露组学在识别环境污染物及其健康危害中的应用进展[J]. 色谱, 2024, 42(2): 142-149. |
[14] | 郝启隆, 王景, 于丽青, 张海霞. 石墨氮化碳/金属有机骨架萃取纤维用于富集肺癌患者呼出气中挥发性有机化合物[J]. 色谱, 2024, 42(12): 1189-1195. |
[15] | 赵媛, 刘新, 张译丹, 张健, 刘向, 杨国锋. 基于串联质量标记的帕金森病血浆及血浆外泌体定量蛋白质组学分析[J]. 色谱, 2023, 41(12): 1073-1083. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 15
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||