色谱 ›› 2025, Vol. 43 ›› Issue (5): 455-471.DOI: 10.3724/SP.J.1123.2024.10032
收稿日期:
2024-10-30
出版日期:
2025-05-08
发布日期:
2025-05-07
通讯作者:
*E-mail:基金资助:
XING Yuhang1, REN Xiangshan2, LI Donghao1, LIU Lu1,*()
Received:
2024-10-30
Online:
2025-05-08
Published:
2025-05-07
Supported by:
摘要:
外泌体是由细胞分泌的纳米级囊泡,其中富含脂质、蛋白质、核酸等多种生物功能分子。外泌体在生物体内的信息传递、疾病机理研究及诊断等方面扮演着类似“物联网、互联网”的关键角色。然而,受限于外泌体来源、尺寸、内含物以及功能的异质性,外泌体分离分析仍然面临诸多挑战。传统外泌体分离分析方法包括超速离心、尺寸排阻和免疫共沉淀等,但这些方法普遍存在产量低、纯度低等问题限制了其进一步的临床应用。微流控技术因其微型化、高通量、自动化和集成化等特点为复杂生物样本的高效分离分析提供了强有力的工具。基于此,本文系统总结了基于微流控技术的外泌体分离和分析方法。首先,讨论了基于外泌体的尺寸、电荷、表面官能团等物化性质结合微流控技术分离外泌体及外泌体亚群的分离方法;其次,分析了基于微流控平台的外泌体检测手段,包括外泌体群体分析方法和单个外泌体分析方法;最后,探讨了微流控技术在外泌体临床应用中的前景,并在疾病诊断和治疗方面进行了展望。微流控技术有望突破传统研究中的分离分析瓶颈,为癌症等重大疾病的精准诊断及治疗提供新技术、新平台。
中图分类号:
邢宇航, 任香善, 李东浩, 刘璐. 基于微流控技术的外泌体分离分析及临床应用[J]. 色谱, 2025, 43(5): 455-471.
XING Yuhang, REN Xiangshan, LI Donghao, LIU Lu. Exosome separation and analysis based on microfluidics technology and its clinical applications[J]. Chinese Journal of Chromatography, 2025, 43(5): 455-471.
图2 基于外泌体尺寸的膜分离技术
Fig. 2 Membrane separation techniques based on exosome size a. isolation of exosomes by tangential flow filtration[38]; b. schematic diagram of a microfluidic device based on double tangential flow filtration for exosome separation[39]; c. schematic illustration of size-based extracellular vesicle (EV) isolation using the exosome total isolation chip (ExoTIC) device[40]; d. schematic diagram of exosome separation by exosome detection via the ultrafast-isolation system (EXODUS) device; e. schematic diagram of EVs isolated from plasma by porous membrane electrophoresis[42]. NP: negative pressure; AP: air pressure.
图3 基于外泌体尺寸分离的其他微流控分离技术
Fig. 3 Other microfluidic separation techniques based on the size of exosomes a. schematic representation of deterministic lateral displacement (DLD) pillar array; b. schematic diagram of EVs separation by a viscoelastic microfluidic device[44]; c. schematic representation of dean-flow-coupled elasto-inertial microfluidic chip (DEIC)-based for exosome purification[45]; d. mechanism and schematic diagram of acoustic fluid device[46]; e. operating mechanism of the acoustofluidic centrifuge platform[47]; f. principle and result diagram of exosome separation based on coffee ring effect[48]; g. schematic illustration of the asymmetric flow field-flow fractionation (AF4) working principle. PEO: poly(oxyethylene); IDTs: interdigitated transducers; PDMS: polydimethyl-siloxane; SAW: surface acoustic waves.
图4 基于外泌体的表面电荷的分离技术
Fig. 4 Separation techniques for exosomes based on surface charge a. EV separation by using agarose gel electrophoresis[53]; b. picture and mechanism of EV/lipoprotein separation device based on sound flow[54]; c. free flow electrophoresis (FFE) chip separation diagram[55]; d. apparatus and mechanism of exosome isolation based on dielectrophoresis[36]. VLDL: very low density lipoprotein; LDL: low density lipoprotein; HDL: high density lipoprotein; BGE: background electrolyte; MV: microvesicles.
图5 基于外泌体的免疫亲和捕获的分离技术
Fig. 5 Isolation technique based on immunoaffinity capture of exosomes a. schematic diagram of rotating magnet assembly system (rMAS) system of microfluidic chip and schematic diagram of fluorescence switching mechanism on the surface of carbon nanomaterials during detection of exosome CD63 by magnetic nanosphere fluorescence method[58]; b. schematic diagram of the preparation procedure of the novel immobilized metal affinity chromatography (IMAC) material and its application in exosomal proteomics analysis[60]; c. the interaction mechanism of AMB with the phospholipid layer of exosomes and array analysis[61]. R: a circular reservoir; FAM: 6-carboxy fluorescein; TET: tetrahedra.
Microfluidic technology | Advantages | Limitations | Samples | Sample volume | Isolated size/nm | Time/ min | Recovery/ % | Ref. |
---|---|---|---|---|---|---|---|---|
Exosome separation based on size | ||||||||
TFF | high throughput, con- tinuous preparation | complex operation, lengthy duration | cell culture super- natant, plasma | 6 mL | 0-350 | 200 | 77.80 | [ |
ExoTIC | high recovery rate, easy to operate, short time consuming | low processing volume | cell culture super- natant, urine, plasma | 10 mL | 30-100 | 125 | 90 | [ |
EXODUS | high recovery rate, easy to operate, short time consuming | low processing volume, complex equipment | cell culture super- natant, urine, tears, plasma | 10 mL | 30-200 | 10 | 100 | [ |
Electrophoresis- driven filtration | easy to operate, short time consuming | low processing volume | plasma | 1 mL | 10-400 | 30 | 65 | [ |
Nano-DLD pillar arrays | minimal damage | low processing volume, complex operation, lengthy duration | urine | 10 μL | 20-110 | 50000 | NA | [ |
Viscoelastic fluid separation | high recovery | complex operation, lengthy duration | cell culture supernatant | 1 mL | 30-500 | 50 | 86 | [ |
Inertial microflu- idics | minimal damage | low processing volume, complex operation, lengthy duration | cell culture supernatant | 1 mL | 0-400 | 100 | 70.60 | [ |
Acoustofluidic technology | minimal damage | complex operation | saliva | NA | 30-150 | 20 | 75 | [ |
Acoustofluidic centrifuge | high recovery rate, short time consuming | low processing volume, complex operation, lengthy duration | plasma | 80 μL | 30-150 | <1 | >80 | [ |
Coffee ring effect | minimal damage | cannot be collected | cell culture supernatant | NA | 100-200 | NA | NA | [ |
AF4 | minimal damage | complex operation, lengthy duration | cell culture supernatant | NA | 35-150 | 50 | NA | [ |
Exosome separation based on surface charge | ||||||||
Plate gel electro- phoresis | high recovery rate, minimal damage, easy to operate | difficulty in recycling, low processing volume, lengthy duration | urine | 20 μL | 10-250 | 120 | 100 | [ |
Capillary electro- phoresis | minimal damage | low processing volume, complex operation, lengthy duration | plasma | 10 μL | 100-200 | 26 | 75 | [ |
Free field electro- phoresis | high recovery rate, minimal damage | low processing volume, complex operation, lengthy duration | pure exosome solution | 1 mL | 35-150 | 100 | 84.2 | [ |
Dielectrophoresis | short time consuming | low processing volume, complex operation | plasma, saliva | 200 μL | 80-200 | 20 | NA | [ |
Exosome separation based on immunoaffinity | ||||||||
Integrated lab-on- a-chip platform | high recovery rate, high specificity | complex operation, lengthy duration | cell culture supernatant | 10 mL | 0-150 | 2000 | 90 | [ |
Wedge high mag- netic field gradi- ent mediates chip | high recovery rate, high specificity | complex operation, long time consuming, low processing volume | cell culture supernatant | 50 μL | 0-400 | 10 | NA | [ |
IMAC nanosized magnetic | high recovery rate, high specificity | low processing volume | cell culture super- natant, plasma | 1 mL | 50-500 | 5 | 90 | [ |
Supramolecular exosome array | high recovery rate, high specificity | low processing volume | saliva, urine, plasma | 10 μL | 30-140 | 40 | 71 | [ |
表1 基于微流控的外泌体分离技术
Table 1 Exosome isolation techniques based on microfluidics
Microfluidic technology | Advantages | Limitations | Samples | Sample volume | Isolated size/nm | Time/ min | Recovery/ % | Ref. |
---|---|---|---|---|---|---|---|---|
Exosome separation based on size | ||||||||
TFF | high throughput, con- tinuous preparation | complex operation, lengthy duration | cell culture super- natant, plasma | 6 mL | 0-350 | 200 | 77.80 | [ |
ExoTIC | high recovery rate, easy to operate, short time consuming | low processing volume | cell culture super- natant, urine, plasma | 10 mL | 30-100 | 125 | 90 | [ |
EXODUS | high recovery rate, easy to operate, short time consuming | low processing volume, complex equipment | cell culture super- natant, urine, tears, plasma | 10 mL | 30-200 | 10 | 100 | [ |
Electrophoresis- driven filtration | easy to operate, short time consuming | low processing volume | plasma | 1 mL | 10-400 | 30 | 65 | [ |
Nano-DLD pillar arrays | minimal damage | low processing volume, complex operation, lengthy duration | urine | 10 μL | 20-110 | 50000 | NA | [ |
Viscoelastic fluid separation | high recovery | complex operation, lengthy duration | cell culture supernatant | 1 mL | 30-500 | 50 | 86 | [ |
Inertial microflu- idics | minimal damage | low processing volume, complex operation, lengthy duration | cell culture supernatant | 1 mL | 0-400 | 100 | 70.60 | [ |
Acoustofluidic technology | minimal damage | complex operation | saliva | NA | 30-150 | 20 | 75 | [ |
Acoustofluidic centrifuge | high recovery rate, short time consuming | low processing volume, complex operation, lengthy duration | plasma | 80 μL | 30-150 | <1 | >80 | [ |
Coffee ring effect | minimal damage | cannot be collected | cell culture supernatant | NA | 100-200 | NA | NA | [ |
AF4 | minimal damage | complex operation, lengthy duration | cell culture supernatant | NA | 35-150 | 50 | NA | [ |
Exosome separation based on surface charge | ||||||||
Plate gel electro- phoresis | high recovery rate, minimal damage, easy to operate | difficulty in recycling, low processing volume, lengthy duration | urine | 20 μL | 10-250 | 120 | 100 | [ |
Capillary electro- phoresis | minimal damage | low processing volume, complex operation, lengthy duration | plasma | 10 μL | 100-200 | 26 | 75 | [ |
Free field electro- phoresis | high recovery rate, minimal damage | low processing volume, complex operation, lengthy duration | pure exosome solution | 1 mL | 35-150 | 100 | 84.2 | [ |
Dielectrophoresis | short time consuming | low processing volume, complex operation | plasma, saliva | 200 μL | 80-200 | 20 | NA | [ |
Exosome separation based on immunoaffinity | ||||||||
Integrated lab-on- a-chip platform | high recovery rate, high specificity | complex operation, lengthy duration | cell culture supernatant | 10 mL | 0-150 | 2000 | 90 | [ |
Wedge high mag- netic field gradi- ent mediates chip | high recovery rate, high specificity | complex operation, long time consuming, low processing volume | cell culture supernatant | 50 μL | 0-400 | 10 | NA | [ |
IMAC nanosized magnetic | high recovery rate, high specificity | low processing volume | cell culture super- natant, plasma | 1 mL | 50-500 | 5 | 90 | [ |
Supramolecular exosome array | high recovery rate, high specificity | low processing volume | saliva, urine, plasma | 10 μL | 30-140 | 40 | 71 | [ |
Microfluidics | Principles | Advantages | Limitations | Analysis objects | Ref. |
---|---|---|---|---|---|
Electrochemical detection | |||||
MOF-functionalized sensing | a MOF-based sensing interface for exosome capture and an enzyme- based logical gate for signal trans- duction and data processing | high selectivity | easy to be disturbed | surface marker, nucleic acid molecule | [ |
Nanopipette-assisted method | the amperometric device measures the electrochemical redox peaks generated during the release of DA from a single exosome | high sensitivity | complex operation | metabolites | [ |
Magnetic deflection detection | |||||
Magnetically driven nanomechanical sensors | magnetic fields deflect magnetic materials that bind exosomes | high sensitivity, high selectivity | complex operation | surface marker | [ |
Colorimetric detection | |||||
Colorimetric aptasensor | exosomes interact with colorimetric reagents, resulting in color changes in the solution | high sensitivity, high selectivity | easy to be disturbed | surface marker, nucleic acid mole- cule, metabolites | [ |
DNAzyme-RCA-based colorimetric and lateral flow dipstick assays | exosomes interact with colorimetric reagents, resulting in color changes in the solution | high selectivity, portable | complex operation | surface marker, nucleic acid mole- cule, metabolites | [ |
Optical detection | |||||
Exosome isolation and detection system | fluorescent probe to label exosomes | immune capture | single object | surface marker | [ |
Microfluidic surface- enhanced Raman scattering sensor | rolling circle amplification and tyramine signal amplification | high sensitivity | complex operation | nucleic acid molecule | [ |
Nanoplasmonic pillars | local surface plasmon resonance is realized by a gold nanosensor matched to the size of a single exosome | individually imaged in real time, high sensitivity | easy to be disturbed, complex operation | surface marker | [ |
Frequency-locked microtoroid optical resonators | changes in the resonant frequency of the microtoroid | high sensitivity | high requirements on samples | size, mass, polarizability | [ |
表2 基于微流控的外泌体分析技术
Table 2 Microfluidics for exosome analysis
Microfluidics | Principles | Advantages | Limitations | Analysis objects | Ref. |
---|---|---|---|---|---|
Electrochemical detection | |||||
MOF-functionalized sensing | a MOF-based sensing interface for exosome capture and an enzyme- based logical gate for signal trans- duction and data processing | high selectivity | easy to be disturbed | surface marker, nucleic acid molecule | [ |
Nanopipette-assisted method | the amperometric device measures the electrochemical redox peaks generated during the release of DA from a single exosome | high sensitivity | complex operation | metabolites | [ |
Magnetic deflection detection | |||||
Magnetically driven nanomechanical sensors | magnetic fields deflect magnetic materials that bind exosomes | high sensitivity, high selectivity | complex operation | surface marker | [ |
Colorimetric detection | |||||
Colorimetric aptasensor | exosomes interact with colorimetric reagents, resulting in color changes in the solution | high sensitivity, high selectivity | easy to be disturbed | surface marker, nucleic acid mole- cule, metabolites | [ |
DNAzyme-RCA-based colorimetric and lateral flow dipstick assays | exosomes interact with colorimetric reagents, resulting in color changes in the solution | high selectivity, portable | complex operation | surface marker, nucleic acid mole- cule, metabolites | [ |
Optical detection | |||||
Exosome isolation and detection system | fluorescent probe to label exosomes | immune capture | single object | surface marker | [ |
Microfluidic surface- enhanced Raman scattering sensor | rolling circle amplification and tyramine signal amplification | high sensitivity | complex operation | nucleic acid molecule | [ |
Nanoplasmonic pillars | local surface plasmon resonance is realized by a gold nanosensor matched to the size of a single exosome | individually imaged in real time, high sensitivity | easy to be disturbed, complex operation | surface marker | [ |
Frequency-locked microtoroid optical resonators | changes in the resonant frequency of the microtoroid | high sensitivity | high requirements on samples | size, mass, polarizability | [ |
图6 基于微流控的外泌体分析技术
Fig. 6 Microfluidics for exosome analysis a. schematic of the preparation of ZIF-8 modified gold electrode (ZIF-8/AuE) and the capture and analysis of exosomes[74]; b. schematic of magnetic force detection for exosomes[76]; c. schematic diagram for DNAzyme-RCA-based colorimetric and lateral flow dipstick assays for the point-of-care testing of exosomal m5C-miRNA-21[78]; d. diagram of surface enhanced Raman spectroscopy for exosome analysis[80]. DNA SAM: DNA self-assembled monolayer; AND: Logic AND gate; TSA: tyramine signal amplification; SERS: surface-enhanced Raman scatting.
图7 外泌体的疾病诊断及临床应用
Fig. 7 Disease diagnosis and clinical application of exosomes a. schematic for detection of urinary exosomal miRNA using hierarchical 3D SERS structure[87]; b. schematics of detection of PDAC exosomes using GFETs with portable electronics and real-time detection results[88]; c. iTEARS for disease detection based on a teardrop[89]. PC: prostate cancer; TCPP: tetrakis(4-carboxyphenyl)porphyrin; GPC-1: glypican-1; PDAC: pancreatic ductal adenocarcinoma; GFETs: graphene field effect transistors; sEVs: small extracellular vesicles; NPO: negative-pressure-oscillation.
|
[1] | 程显惠, 于文静, 王冬雪, 姜丽艳, 胡良海. 磷脂酰丝氨酸分子印迹聚合物对血浆外泌体的富集与蛋白质组学分析[J]. 色谱, 2025, 43(5): 539-546. |
[2] | 侯国姗, 袁辉明, 梁振, 张丽华, 张玉奎. 外泌体分离富集技术及其在疾病诊疗中的应用[J]. 色谱, 2025, 43(5): 434-445. |
[3] | 陈晓菲, 刘威, 张文镓, 李言鹏, 王志华, 高明霞, 张祥民. 脑脊液外泌体亚群的分离及其蛋白质组学分析[J]. 色谱, 2025, 43(5): 518-528. |
[4] | 徐坤, 黄嫣嫣, 赵睿. 多肽识别导向的外泌体分离富集方法研究进展[J]. 色谱, 2025, 43(5): 446-454. |
[5] | 王海燕, 谢沛涓, 乔晓强, 张丽媛. 基于亲和作用力的外泌体高效分离方法的经典策略和研究进展[J]. 色谱, 2025, 43(5): 413-423. |
[6] | 郑李婷, 杨歌, 屈锋. 外泌体的核酸适配体筛选技术研究进展[J]. 色谱, 2025, 43(5): 424-433. |
[7] | 卜彩婷, 竺雪冬, 张倩颖, 邵文亚. 外泌体在神经退行性疾病中的作用研究进展[J]. 色谱, 2025, 43(5): 487-497. |
[8] | 苏雅婷, 钱小红, 秦伟捷. 脂质体与外泌体在药物递送和生物标志物筛选中的研究进展[J]. 色谱, 2025, 43(5): 472-486. |
[9] | 卜爱香, 武光耀, 胡良海. 单细胞与单颗粒外泌体分离分析进展与展望[J]. 色谱, 2025, 43(5): 399-412. |
[10] | 黄雨霞, 王海燕, 张屹涵, 蔺奕菲, 乔晓强, 胡良海. 外泌体在生物标志物研究领域的文献计量学分析[J]. 色谱, 2025, 43(5): 498-507. |
[11] | 赵孟乾, 刘海涛, 张旭, 甘忠桥, 秦建华. 全水相微流控系统一步制备球丝异质载体用作细胞三维培养[J]. 色谱, 2023, 41(9): 742-751. |
[12] | 黄剑英, 夏凌, 肖小华, 李攻科. 微芯片电泳技术在生物样品分离分析中的研究进展[J]. 色谱, 2023, 41(8): 641-650. |
[13] | 赵媛, 刘新, 张译丹, 张健, 刘向, 杨国锋. 基于串联质量标记的帕金森病血浆及血浆外泌体定量蛋白质组学分析[J]. 色谱, 2023, 41(12): 1073-1083. |
[14] | 李俊豪, 韩冠华, 林晓涛, 吴力强, 钱纯亘, 徐军发. 基于微流控技术的磁免疫荧光法在EB病毒检测中的应用[J]. 色谱, 2022, 40(4): 372-383. |
[15] | 曹荣凯, 张敏, 于浩, 秦建华. 微流控芯片系统在循环肿瘤细胞分离检测中的应用进展[J]. 色谱, 2022, 40(3): 213-223. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||