Chinese Journal of Chromatography ›› 2021, Vol. 39 ›› Issue (11): 1171-1181.DOI: 10.3724/SP.J.1123.2021.01017
• Articles • Previous Articles Next Articles
WEI Qin, CHEN Xiuxiu, BAI Lihong, ZHAO Liang, HUANG Yanping*(), LIU Zhaosheng*(
)
Received:
2021-01-12
Online:
2021-11-08
Published:
2021-06-18
Contact:
HUANG Yanping,LIU Zhaosheng
Supported by:
CLC Number:
WEI Qin, CHEN Xiuxiu, BAI Lihong, ZHAO Liang, HUANG Yanping, LIU Zhaosheng. Preparation of liquid crystal-based molecularly imprinted monolith and its molecular recognition thermodynamics[J]. Chinese Journal of Chromatography, 2021, 39(11): 1171-1181.
Monolith | AIBN/ mg | TRIM/ μL | Toluene/ μL | Isooctane/ μL | Dodecanol/ μL | Time/ h | Theory plates/ (plates/m) | Back pressure/ kPa |
---|---|---|---|---|---|---|---|---|
C1 | 18 | 1000 | 1200 | 1800 | 0 | 16 | 3940 | 3447.5 |
C2 | 18 | 1000 | 1200 | 1800 | 0 | 14 | 9000 | 703.3 |
C3 | 18 | 1000 | 1200 | 1800 | 0 | 12 | 1980 | 0 |
C4 | 18 | 1000 | 1200 | 0 | 1800 | 14 | 1900 | 2482.2 |
C5 | 18 | 1000 | 750 | 0 | 2250 | 14 | 12000 | 324.1 |
C6 | 18 | 1000 | 600 | 0 | 2400 | 14 | 900 | 0 |
C7 | 18 | 1000 | 750 | 0 | 2250 | 15 | 4000 | 703.3 |
C8 | 18 | 1000 | 750 | 0 | 2250 | 13 | 1200 | 0 |
Table 1 Formulation for preparing the skeleton material of the grafted imprinted monolith
Monolith | AIBN/ mg | TRIM/ μL | Toluene/ μL | Isooctane/ μL | Dodecanol/ μL | Time/ h | Theory plates/ (plates/m) | Back pressure/ kPa |
---|---|---|---|---|---|---|---|---|
C1 | 18 | 1000 | 1200 | 1800 | 0 | 16 | 3940 | 3447.5 |
C2 | 18 | 1000 | 1200 | 1800 | 0 | 14 | 9000 | 703.3 |
C3 | 18 | 1000 | 1200 | 1800 | 0 | 12 | 1980 | 0 |
C4 | 18 | 1000 | 1200 | 0 | 1800 | 14 | 1900 | 2482.2 |
C5 | 18 | 1000 | 750 | 0 | 2250 | 14 | 12000 | 324.1 |
C6 | 18 | 1000 | 600 | 0 | 2400 | 14 | 900 | 0 |
C7 | 18 | 1000 | 750 | 0 | 2250 | 15 | 4000 | 703.3 |
C8 | 18 | 1000 | 750 | 0 | 2250 | 13 | 1200 | 0 |
Monolith | Crosslinking degree/% | CPCE/ mmol | EDMA/ mmol | Toluene/ mL | Dodecanol/ mL |
---|---|---|---|---|---|
P1 | 26 | 2.15 | 1.05 | 1.556 | 0.389 |
P2 | 20 | 2.40 | 0.80 | 1.556 | 0.389 |
P3 | 15 | 2.59 | 0.60 | 1.556 | 0.389 |
P4 | 10 | 2.79 | 0.40 | 1.556 | 0.389 |
P5 | 7.5 | 2.90 | 0.30 | 1.556 | 0.389 |
P6 | 5.0 | 3.00 | 0.20 | 1.556 | 0.389 |
P7 | 70 | 0 | 1.90 | 1.556 | 0.389 |
P10 | 30 | 2.00 | 1.20 | 1.945 | 0 |
Table 2 Formulation of MIPs grafted onto monolithic column skeleton
Monolith | Crosslinking degree/% | CPCE/ mmol | EDMA/ mmol | Toluene/ mL | Dodecanol/ mL |
---|---|---|---|---|---|
P1 | 26 | 2.15 | 1.05 | 1.556 | 0.389 |
P2 | 20 | 2.40 | 0.80 | 1.556 | 0.389 |
P3 | 15 | 2.59 | 0.60 | 1.556 | 0.389 |
P4 | 10 | 2.79 | 0.40 | 1.556 | 0.389 |
P5 | 7.5 | 2.90 | 0.30 | 1.556 | 0.389 |
P6 | 5.0 | 3.00 | 0.20 | 1.556 | 0.389 |
P7 | 70 | 0 | 1.90 | 1.556 | 0.389 |
P10 | 30 | 2.00 | 1.20 | 1.945 | 0 |
Monolith (Crosslinking degree) | tR/ min | k | N/ (plates/m) | IF |
---|---|---|---|---|
P1 (26%) | 6.70 | 2.22 | 2410 | 2.66 |
P2 (20%) | 6.61 | 2.18 | 2880 | 2.32 |
P3 (15%) | 4.17 | 1.22 | 3870 | 3.78 |
P4 (10%) | 3.71 | 0.52 | 3980 | 1.59 |
P5 (7.5%) | 4.28 | 0.63 | 4250 | 1.44 |
P6 (5.0%) | 4.11 | 0.50 | 4900 | 1.02 |
P7 (70%) | 7.90 | 1.18 | 5400 | 1.66 |
Table 3 Chromatography parameters of naproxen on different MIP monoliths
Monolith (Crosslinking degree) | tR/ min | k | N/ (plates/m) | IF |
---|---|---|---|---|
P1 (26%) | 6.70 | 2.22 | 2410 | 2.66 |
P2 (20%) | 6.61 | 2.18 | 2880 | 2.32 |
P3 (15%) | 4.17 | 1.22 | 3870 | 3.78 |
P4 (10%) | 3.71 | 0.52 | 3980 | 1.59 |
P5 (7.5%) | 4.28 | 0.63 | 4250 | 1.44 |
P6 (5.0%) | 4.11 | 0.50 | 4900 | 1.02 |
P7 (70%) | 7.90 | 1.18 | 5400 | 1.66 |
Monolith | Frontal analysis | Langmuir fitting | Freundlich fitting | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bt/μmol | Kd/(mmol/L) | R | Q0/(mmol/L) | KL/(L/mmol) | R | KF/(mmol/L) | 1/n | R | ||||
P1 (26%) | 91.91 | 4.6 | 0.999 | 129.2 | 0.168 | 0.999 | 118.0 | 0.965 | 0.999 | |||
P2 (20%) | 232.6 | 12.3 | 0.999 | 115.5 | 0.066 | 0.999 | 111.2 | 0.985 | 0.999 | |||
P3 (15%) | 129.5 | 6.6 | 0.999 | 257.4 | 0.063 | 0.999 | 246.7 | 0.922 | 0.999 | |||
P4 (10%) | 598.8 | 32.3 | 0.999 | 188.4 | 0.042 | 0.999 | 184.5 | 0.994 | 0.999 | |||
P5 (7.5%) | 446.0 | 240.0 | 0.999 | 159.2 | 0.011 | 0.999 | 160.1 | 0.998 | 0.999 | |||
P7 (70%) | 235.8 | 12.4 | 0.999 | 255.3 | 0.034 | 0.999 | 248.5 | 0.986 | 0.999 |
Table 4 Frontal analysis results for different MIP monoliths, with Langmuir and Freundlich fitting parameters
Monolith | Frontal analysis | Langmuir fitting | Freundlich fitting | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bt/μmol | Kd/(mmol/L) | R | Q0/(mmol/L) | KL/(L/mmol) | R | KF/(mmol/L) | 1/n | R | ||||
P1 (26%) | 91.91 | 4.6 | 0.999 | 129.2 | 0.168 | 0.999 | 118.0 | 0.965 | 0.999 | |||
P2 (20%) | 232.6 | 12.3 | 0.999 | 115.5 | 0.066 | 0.999 | 111.2 | 0.985 | 0.999 | |||
P3 (15%) | 129.5 | 6.6 | 0.999 | 257.4 | 0.063 | 0.999 | 246.7 | 0.922 | 0.999 | |||
P4 (10%) | 598.8 | 32.3 | 0.999 | 188.4 | 0.042 | 0.999 | 184.5 | 0.994 | 0.999 | |||
P5 (7.5%) | 446.0 | 240.0 | 0.999 | 159.2 | 0.011 | 0.999 | 160.1 | 0.998 | 0.999 | |||
P7 (70%) | 235.8 | 12.4 | 0.999 | 255.3 | 0.034 | 0.999 | 248.5 | 0.986 | 0.999 |
MIP | High affinity sites | Low affinity sites | |||||
---|---|---|---|---|---|---|---|
Qmax/ (mmol/ L) | Kd/ (mmol/ L) | R | Qmax/ (mmol/ L) | Kd/ (mmol/ L) | R | ||
P1(26%) | 473 | 3.6 | 0.999 | 1117 | 8.8 | 0.992 | |
P2(20%) | 782 | 6.7 | 0.992 | 1370 | 11.8 | 0.906 | |
P3(15%) | 1366 | 4.6 | 0.999 | 1240 | 5.2 | 0.999 | |
P4(10%) | 2543 | 10.8 | 0.975 | 2661 | 13.5 | 0.947 | |
P5(7.5%) | 2329 | 14.5 | 0.971 | 9231 | 57.5 | 0.947 | |
P7(70%) | 1762 | 6.8 | 0.986 | 9169 | 36.0 | 0.911 |
Table 5 Scatchard fitting parameters for different MIP monoliths
MIP | High affinity sites | Low affinity sites | |||||
---|---|---|---|---|---|---|---|
Qmax/ (mmol/ L) | Kd/ (mmol/ L) | R | Qmax/ (mmol/ L) | Kd/ (mmol/ L) | R | ||
P1(26%) | 473 | 3.6 | 0.999 | 1117 | 8.8 | 0.992 | |
P2(20%) | 782 | 6.7 | 0.992 | 1370 | 11.8 | 0.906 | |
P3(15%) | 1366 | 4.6 | 0.999 | 1240 | 5.2 | 0.999 | |
P4(10%) | 2543 | 10.8 | 0.975 | 2661 | 13.5 | 0.947 | |
P5(7.5%) | 2329 | 14.5 | 0.971 | 9231 | 57.5 | 0.947 | |
P7(70%) | 1762 | 6.8 | 0.986 | 9169 | 36.0 | 0.911 |
Analyte | ln A | nβ | r |
---|---|---|---|
NAP | 0.645 | 36.3 | -0.975 |
IBU | -0.389 | 28.3 | -0.974 |
FLU | -0.365 | 28.9 | -0.963 |
KET | 0.242 | 39.5 | -0.983 |
FENBI | 0.304 | 30.6 | -0.973 |
FENO | 0.123 | 30.9 | -0.966 |
Table 6 SDM-R results for liquid crystal imprinted monolithic column (P1)
Analyte | ln A | nβ | r |
---|---|---|---|
NAP | 0.645 | 36.3 | -0.975 |
IBU | -0.389 | 28.3 | -0.974 |
FLU | -0.365 | 28.9 | -0.963 |
KET | 0.242 | 39.5 | -0.983 |
FENBI | 0.304 | 30.6 | -0.973 |
FENO | 0.123 | 30.9 | -0.966 |
Fig. 4 Van’t Hoff plots of retention factors and separation factors (α) of naproxen and its analogues versus temperature on imprinted monoliths with different crosslinking degrees
Monolith | Analyte | ΔH/(kJ/mol) | ΔS/(J/(mol·K)) | r1 | ΔΔH/(kJ/mol) | ΔΔS/(J/(mol·K)) | r2 |
---|---|---|---|---|---|---|---|
P1 (26%) | NAP | -9.60 | -27.5 | 0.987 | |||
IBU | -10.7 | -39.4 | 0.962 | 1.75 | 14.2 | -0.988 | |
FENBI | -14.3 | -45.7 | 0.990 | 4.67 | 18.3 | -0.983 | |
FLU | -12.6 | -45.6 | 0.979 | 3.55 | 20.0 | -0.916 | |
KET | -12.5 | -40.9 | 0.974 | 3.44 | 15.3 | -0.931 | |
FENO | -13.3 | -43.8 | 0.988 | 3.68 | 16.4 | -0.971 | |
P3 (15%) | NAP | -14.1 | -47.5 | 0.999 | |||
IBU | -13.2 | -50.2 | 0.989 | 1.11 | 9.23 | -0.995 | |
FENBI | -14.5 | -49.4 | 0.996 | 0.385 | 1.82 | -0.953 | |
FLU | -13.7 | -51.7 | 0.994 | 0.554 | 7.40 | -0.981 | |
KET | -14.1 | -49.1 | 0.991 | 0.421 | 2.97 | -0.987 | |
FENO | -14.0 | -49.3 | 0.994 | 1.17 | 5.70 | -0.998 | |
P5 (7.5%) | NAP | -14.2 | -50.3 | 0.995 | |||
IBU | -13.5 | -50.8 | 0.993 | 2.11 | 11.6 | 0.966 | |
FENBI | -15.0 | -52.7 | 0.999 | 0.358 | 1.27 | -0.929 | |
FLU | -15.5 | -59.6 | 0.995 | 1.63 | 10.4 | -0.967 | |
KET | -15.0 | -53.8 | 0.996 | 0.801 | 3.61 | -0.983 | |
FENO | -15.0 | -54.1 | 0.993 | 1.16 | 5.14 | -0.964 | |
P7 (70%) | NAP | -10.9 | -34.6 | 0.991 | |||
IBU | -11.4 | -45.7 | 0.998 | 12.9 | 14.0 | -0.919 | |
FENBI | -12.7 | -45.5 | 0.995 | 12.2 | 12.1 | -0.923 | |
FLU | -12.0 | -47.8 | 0.987 | 15.1 | 14.7 | -0.956 | |
KET | -12.7 | -46.8 | 0.999 | 17.9 | 12.7 | -0.983 | |
FENO | -11.7 | -43.4 | 0.999 | 8.32 | 8.92 | -0.918 |
Table 7 Thermodynamic parameters of imprinted monoliths with different crosslinking degrees
Monolith | Analyte | ΔH/(kJ/mol) | ΔS/(J/(mol·K)) | r1 | ΔΔH/(kJ/mol) | ΔΔS/(J/(mol·K)) | r2 |
---|---|---|---|---|---|---|---|
P1 (26%) | NAP | -9.60 | -27.5 | 0.987 | |||
IBU | -10.7 | -39.4 | 0.962 | 1.75 | 14.2 | -0.988 | |
FENBI | -14.3 | -45.7 | 0.990 | 4.67 | 18.3 | -0.983 | |
FLU | -12.6 | -45.6 | 0.979 | 3.55 | 20.0 | -0.916 | |
KET | -12.5 | -40.9 | 0.974 | 3.44 | 15.3 | -0.931 | |
FENO | -13.3 | -43.8 | 0.988 | 3.68 | 16.4 | -0.971 | |
P3 (15%) | NAP | -14.1 | -47.5 | 0.999 | |||
IBU | -13.2 | -50.2 | 0.989 | 1.11 | 9.23 | -0.995 | |
FENBI | -14.5 | -49.4 | 0.996 | 0.385 | 1.82 | -0.953 | |
FLU | -13.7 | -51.7 | 0.994 | 0.554 | 7.40 | -0.981 | |
KET | -14.1 | -49.1 | 0.991 | 0.421 | 2.97 | -0.987 | |
FENO | -14.0 | -49.3 | 0.994 | 1.17 | 5.70 | -0.998 | |
P5 (7.5%) | NAP | -14.2 | -50.3 | 0.995 | |||
IBU | -13.5 | -50.8 | 0.993 | 2.11 | 11.6 | 0.966 | |
FENBI | -15.0 | -52.7 | 0.999 | 0.358 | 1.27 | -0.929 | |
FLU | -15.5 | -59.6 | 0.995 | 1.63 | 10.4 | -0.967 | |
KET | -15.0 | -53.8 | 0.996 | 0.801 | 3.61 | -0.983 | |
FENO | -15.0 | -54.1 | 0.993 | 1.16 | 5.14 | -0.964 | |
P7 (70%) | NAP | -10.9 | -34.6 | 0.991 | |||
IBU | -11.4 | -45.7 | 0.998 | 12.9 | 14.0 | -0.919 | |
FENBI | -12.7 | -45.5 | 0.995 | 12.2 | 12.1 | -0.923 | |
FLU | -12.0 | -47.8 | 0.987 | 15.1 | 14.7 | -0.956 | |
KET | -12.7 | -46.8 | 0.999 | 17.9 | 12.7 | -0.983 | |
FENO | -11.7 | -43.4 | 0.999 | 8.32 | 8.92 | -0.918 |
|
[1] | LI Ting, CHANG Mengmeng, SHI Xianzhe, XU Guowang. Advances in application of molecularly imprinted polymers to the detection of polar pesticide residues [J]. Chinese Journal of Chromatography, 2021, 39(9): 930-940. |
[2] | WANG Yixiao, LI Jinhua, WANG Liyan, QI Ji, CHEN Lingxin. Recent advances in applications of fragment/dummy molecularly imprinted polymers [J]. Chinese Journal of Chromatography, 2021, 39(2): 134-141. |
[3] | DOU Peng, XIANG Yumiao, LIANG Liang, LIU Zhen. Preparation of multi-functional magnetic nanoparticles for harvesting low-molecular-weight glycoproteins [J]. Chinese Journal of Chromatography, 2021, 39(10): 1102-1110. |
[4] | LI Zhenqun, JIA Li. Research progress of molecularly imprinted polymers in separation of chiral drugs by capillary electrochromatography [J]. Chinese Journal of Chromatography, 2020, 38(9): 1046-1056. |
[5] | WANG Liyan, WANG Jia'nan, LI Jinhua, CHEN Lingxin. Applications of molecularly imprinted polymers for determination of antibiotics residues [J]. Chinese Journal of Chromatography, 2020, 38(3): 265-277. |
[6] | HOU Huiqing, SU Liming, HUANG Yanyan, JIN Yulong, ZHAO Rui. Recent applications of surface molecularly imprinting materials and techniques for separation and analysis [J]. Chinese Journal of Chromatography, 2016, 34(12): 1206-1214. |
[7] | ZHENG Penglei, LUO Zhimin, CHANG Ruimiao, GE Yanhui, DU Wei, CHANG Chun, FU Qiang. Preparation of surface molecularly imprinted polymers for penicilloic acid and its adsorption properties [J]. Chinese Journal of Chromatography, 2015, 33(9): 957-965. |
[8] | LI Guizhen, TANG Weiyang, CAO Weimin, WANG Qian, ZHU Tao. Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn [J]. Chinese Journal of Chromatography, 2015, 33(8): 792-798. |
[9] | CHEN Langxing, LIU Yuxing, HE Xiwen, ZHANG Yukui. Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin [J]. Chinese Journal of Chromatography, 2015, 33(5): 481-487. |
[10] | QI Yuxia, ZHAO Lijuan, MA Meihua, WEI Chanling, LI Ya, LI Wenjing, GONG Bolin. Preparation and applications of 4-methyl imidazole magnetic surface molecularly imprinted polymers [J]. Chinese Journal of Chromatography, 2015, 33(12): 1234-1241. |
[11] | SONG Bin, LI Jinyi, JING Tao, NIU Jiwei, ZHOU Yusun, MEI Surong. Determination of erythromycin residue in pork samples using molecularly imprinted solid phase extraction coupled with high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2014, 32(10): 1111-1116. |
[12] | HUANG Yi, ZHANG Qingjie, LIU Min, WANG Xufeng, LI Jianqin, HE Limin*. Molecularly-imprinted solid phase extraction coupled with high performance liquid chromatography for the determination of ractopamine in feed samples [J]. Chinese Journal of Chromatography, 2012, 30(01): 56-61. |
[13] | HIREMATH Vijay Basayya, KALIAPERUMAL Krishna, BHOJRAJ Suresh, NANJAN Mulla Joghee. In vitro dissolution profile comparison of an anti-migraine combinational drug in dosage form [J]. Chinese Journal of Chromatography, 2010, 28(1): 93-99. |
[14] | ZHENG Chao, GAO Ruyu, ZHANG Yukui. Separation and Recognition of Biomacromolecule by Molecular Imprinting Technique [J]. Chinese Journal of Chromatography, 2006, 24(3): 309-314. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||