Chinese Journal of Chromatography ›› 2022, Vol. 40 ›› Issue (3): 289-295.DOI: 10.3724/SP.J.1123.2021.08017
• Articles • Previous Articles Next Articles
LI Chao, WANG Qi, ZHANG Zhaoxiang*()
Received:
2021-08-18
Online:
2022-03-08
Published:
2022-03-04
Contact:
ZHANG Zhaoxiang
Supported by:
CLC Number:
LI Chao, WANG Qi, ZHANG Zhaoxiang. Field-amplified sample injection and graphene quantum dot dual preconcentration in the analysis of melamine and dicyandiamide by capillary electrophoresis[J]. Chinese Journal of Chromatography, 2022, 40(3): 289-295.
Fig. 2 Schematic diagrams of CE separation based on field-amplified sample injection and graphene quantum dot dual preconcentration a. field-amplified sample injection preconcentration; b. preconcentration of S-GQDs as multianalyte carriers; c. CE separation. Veo: velocity of electroosmotic flow; Vep: velocity of electrophoresis.
Fig. 3 (a) Transmission electron microscopy (TEM) image, (b)particle size distribution, and (c) X-ray diffraction (XRD) pattern of the as-prepared S-GQDs
Fig. 5 Effect of the volume fraction of S-GQDs in the buffer on the analysis of melamine and dicyandiamide Volume fraction of S-GQDs: a. 0; b. 10%; c. 20%; d. 25%. Peak 1: melamine; peak 2: dicyandiamide.
Fig. 7 Comparison of electropherograms without (a) and with (b) FASI and S-GQDs dual preconcentration a. 50 mmol/L phosphate buffer solution; pH 4.6. The concentrations of both melamine and dicyandiamide were 1.0×10-6mol/L. Sample injection volume: 10 kV×10 s. b. Buffer solution (50 mmol/L phosphate+25% (v/v) S-GQDs). The concentrations of both melamine and dicyandiamide were 1.0×10-10mol/L. FASI volume: 10 kV×450 s. Peaks: 1. melamine; 2. dicyandiamide.
Compound | Regression equation | r2 | linear range/ (mol/L) | LOD/ (mol/L) | RSDs/% | ||
---|---|---|---|---|---|---|---|
Peak height | Peak area | Migration time | |||||
Melamine | y=-238.8x+3349.1 | 0.9996 | 10-14-10-8 | 2.6×10-15 | 2.8 | 2.6 | 4.3 |
Dicyandiamide | y=-219.6x+3074.3 | 0.9992 | 10-14-10-8 | 5.7×10-15 | 3.2 | 3.7 | 5.6 |
y: peak height; x: -log c; c: concentration, mol/L. |
Table 1 Regression equations, correlation coefficients (r2), linear ranges, LODs, and precisions (RSDs) of melamine and dicyandiamide (n=5)
Compound | Regression equation | r2 | linear range/ (mol/L) | LOD/ (mol/L) | RSDs/% | ||
---|---|---|---|---|---|---|---|
Peak height | Peak area | Migration time | |||||
Melamine | y=-238.8x+3349.1 | 0.9996 | 10-14-10-8 | 2.6×10-15 | 2.8 | 2.6 | 4.3 |
Dicyandiamide | y=-219.6x+3074.3 | 0.9992 | 10-14-10-8 | 5.7×10-15 | 3.2 | 3.7 | 5.6 |
y: peak height; x: -log c; c: concentration, mol/L. |
Method | Detection limits | Reference | |||
---|---|---|---|---|---|
Melamine | Dicyandiamide | ||||
LC-MS | 54 | μg/L | 5.4 | μg/L | [ |
HPLC-MS | 0.1 | mg/kg | 0.4 | mg/kg | [ |
Tandem dual solid phase extraction cartridges-HPLC-electrospray | 1.48 | μg/kg | 13.61 | μg/kg | [ |
ionization multi-stage MS | |||||
Magnetic surface molecularly imprinted polymers-HPLC | 15 | μg/L | - | [ | |
FASI+S-GQDs CE | 2.6×10-15 | mol/L | 5.7×10-15 | mol/L | this work |
Table 2 Comparison with other methods for the determination of melamine and dicyandiamide
Method | Detection limits | Reference | |||
---|---|---|---|---|---|
Melamine | Dicyandiamide | ||||
LC-MS | 54 | μg/L | 5.4 | μg/L | [ |
HPLC-MS | 0.1 | mg/kg | 0.4 | mg/kg | [ |
Tandem dual solid phase extraction cartridges-HPLC-electrospray | 1.48 | μg/kg | 13.61 | μg/kg | [ |
ionization multi-stage MS | |||||
Magnetic surface molecularly imprinted polymers-HPLC | 15 | μg/L | - | [ | |
FASI+S-GQDs CE | 2.6×10-15 | mol/L | 5.7×10-15 | mol/L | this work |
Sample | Melamine | Dicyandiamide | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Original/ (μg/L) | Added/ (μg/L) | Found/ (μg/L) | Recovery/ % | RSD/ % | Original/ (μg/L) | Added/ (μg/L) | Found/ (μg/L) | Recovery/ % | RSD/ % | ||
1# | 82.5 | 80.0 | 159.2 | 95.9 | 3.3 | 5.6 | 5.0 | 10.2 | 92.0 | 2.2 | |
2# | 67.9 | 80.0 | 149.8 | 102.4 | 2.9 | 1.2 | 5.0 | 6.5 | 106.0 | 4.4 | |
3# | 96.2 | 80.0 | 175.1 | 98.6 | 4.8 | 2.9 | 5.0 | 7.6 | 94.0 | 2.8 |
Table 3 Spiked recoveries of melamine and dicyandiamide and their RSDs in metformin hydrochloride samples (n=5)
Sample | Melamine | Dicyandiamide | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Original/ (μg/L) | Added/ (μg/L) | Found/ (μg/L) | Recovery/ % | RSD/ % | Original/ (μg/L) | Added/ (μg/L) | Found/ (μg/L) | Recovery/ % | RSD/ % | ||
1# | 82.5 | 80.0 | 159.2 | 95.9 | 3.3 | 5.6 | 5.0 | 10.2 | 92.0 | 2.2 | |
2# | 67.9 | 80.0 | 149.8 | 102.4 | 2.9 | 1.2 | 5.0 | 6.5 | 106.0 | 4.4 | |
3# | 96.2 | 80.0 | 175.1 | 98.6 | 4.8 | 2.9 | 5.0 | 7.6 | 94.0 | 2.8 |
|
[1] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[2] | MA Yao, HU Yangyang, ZHENG Liting, CHEN Li, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2021 [J]. Chinese Journal of Chromatography, 2022, 40(7): 591-599. |
[3] | CHI Zhongmei, YANG Li. Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(6): 509-519. |
[4] | ZHANG Chong, GUO Yun, PENG Zifang, ZHANG Wenfen, ZHANG Shusheng. Preparation of melamine-functionalized porous organic polymer and its adsorption properties for methyl orange [J]. Chinese Journal of Chromatography, 2021, 39(9): 998-1005. |
[5] | ZHANG Piwang, YANG Liye, LIU Qiang, LU Shangui, LIANG Ying, ZHANG Min. Multimaterial 3D-printed contactless conductivity/laser-induced fluorescence dual-detection cell for capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(8): 921-926. |
[6] | JIANG Haowen, LI Jian, TAN Zhiqiang, GUO Yingying, LIU Yanwei, HU Ligang, YIN Yongguang, CAI Yong, JIANG Guibin. Application of non-stationary phase separation hyphenated with inductively coupled plasma mass spectrometry in the analysis of trace metal-containing nanoparticles in the environment [J]. Chinese Journal of Chromatography, 2021, 39(8): 855-869. |
[7] | HAN Shimiao, ZHAO Liping, YANG Ge, QU Feng. Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(7): 721-729. |
[8] | WEI Bo, MA Yao, TIAN Wenzhe, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2020 [J]. Chinese Journal of Chromatography, 2021, 39(6): 559-566. |
[9] | QIN Shaojie, BAI Yu, LIU Huwei. Methods and applications of single-cell proteomics analysis based on mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(2): 142-151. |
[10] | WANG Yuanyu, ZHANG Ruihua, ZHANG Qiang, CAO Chengxi, FAN Liuyin, LIU Weiwen. Determination of two quaternary ammonium salts in disinfector by portable capillary electrophoresis device based on smartphone [J]. Chinese Journal of Chromatography, 2021, 39(11): 1151-1156. |
[11] | BAI Yu, FAN Yufan, GE Guangbo, WANG Fangjun. Advances in chromatography in the study of drug-plasma protein interactions [J]. Chinese Journal of Chromatography, 2021, 39(10): 1077-1085. |
[12] | ZHAO Yi, MA Yao, WEI Bo, TIAN Wenzhe, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2019 [J]. Chinese Journal of Chromatography, 2020, 38(9): 986-992. |
[13] | LIN Changying, DING Xiaojing. Application, development, and challenges of capillary electrophoresis in disease prevention and control [J]. Chinese Journal of Chromatography, 2020, 38(9): 999-1012. |
[14] | WANG Yuchen, WANG Yanmei. Application of poly(2-methyl-2-oxazoline) in protein separation by capillary electrophoresis [J]. Chinese Journal of Chromatography, 2020, 38(9): 1022-1027. |
[15] | ZHANG Qi. Recent advance of novel chiral separation systems in capillary electrophoresis [J]. Chinese Journal of Chromatography, 2020, 38(9): 1028-1037. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 76
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||