Chinese Journal of Chromatography ›› 2023, Vol. 41 ›› Issue (2): 107-121.DOI: 10.3724/SP.J.1123.2022.07020
• Review • Previous Articles Next Articles
OUYANG Yilan,#, YI Lin,#, QIU Luyun, ZHANG Zhenqing()
Received:
2022-07-23
Online:
2023-02-08
Published:
2023-02-01
Contact:
ZHANG Zhenqing
Supported by:
No. | Derivatization reagent | Method | Parameters | Analytes | Ref. | Published year |
---|---|---|---|---|---|---|
1 | PMP | RPLC-UV | LOD:0.04-1.6 μmol/L;LOQ:0.15-1.6 μmol/L;mass recovery:92%-100%;RSD:0.3% | 10 sugars | [ | 2016 |
2 | PMP | RPLC-MS(MRM) | LOD:0.056-5.6 fmol/L;LOQ:0.5-10 ng/mL;RSD:6.0% | 16 sugars | [ | 2017 |
3 | 2-AB and 2-AP | RPLC-UV | LOD:1.2-11 nmol/L;LOQ:4-36 nmol/L;repeatability:2%-9%;inter-day repeatability:3%-9% | 10 sugars | [ | 2021 |
4 | d3-4-MOBHA·HCl | RPLC-MS(MRM) | LOD:1.2-11 nmol/L;LOQ:0.25-3 fmol/L;mass recovery: 85%-110% | 12 sugars | [ | 2021 |
5 | no | IC | LOD:1.0 ng;LOQ:2.5 ng | 16 sugars | [ | 2012 |
Table 1 Monosaccharide composition analysis methods
No. | Derivatization reagent | Method | Parameters | Analytes | Ref. | Published year |
---|---|---|---|---|---|---|
1 | PMP | RPLC-UV | LOD:0.04-1.6 μmol/L;LOQ:0.15-1.6 μmol/L;mass recovery:92%-100%;RSD:0.3% | 10 sugars | [ | 2016 |
2 | PMP | RPLC-MS(MRM) | LOD:0.056-5.6 fmol/L;LOQ:0.5-10 ng/mL;RSD:6.0% | 16 sugars | [ | 2017 |
3 | 2-AB and 2-AP | RPLC-UV | LOD:1.2-11 nmol/L;LOQ:4-36 nmol/L;repeatability:2%-9%;inter-day repeatability:3%-9% | 10 sugars | [ | 2021 |
4 | d3-4-MOBHA·HCl | RPLC-MS(MRM) | LOD:1.2-11 nmol/L;LOQ:0.25-3 fmol/L;mass recovery: 85%-110% | 12 sugars | [ | 2021 |
5 | no | IC | LOD:1.0 ng;LOQ:2.5 ng | 16 sugars | [ | 2012 |
Fig. 3 Analysis of heparin depolymerized by heparinase mixture by strong anion exchange chromatography (SAX)[63,65] a. chromatogram of SAX-UV, black line: 232 nm, red line: 202-242 nm[63]; b. schematic of multiple heart-cutting two dimensional chromatography with MS (MHC 2D-LC-MS) system[65]; c. chromatograms of MHC 2D-LC-MS (1D-SAX, 232 nm)[65].
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | ΔU-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
2 | ΔU-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
3 | ΔU-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
4 | ΔU2S-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
5 | ΔU-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
6 | ΔU2S-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
7 | ΔU2S-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
8 | ΔU2S-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
9 | ΔGalA-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
10 | ΔGalA-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
12 | IdoA2S-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
13 | U2S-GlcNS or U-GlcNS,6S | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
14 | U2S-GlcNAc or U-GlcNAc,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
15 | IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
16 | ΔU2S-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
17 | ΔU2S-GlcN | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
18 | ΔU-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
19 | ΔU-GlcN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
20 | ΔGlyser | 1 | 1 | 1 | 1 | 0 | 1 | 1 | ||
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
21 | ΔGlyserox1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
22 | ΔGlyserox2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
23 | Other non-endogenous derivatives ΔISO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
24 | Tetrasaccharide A ΔIS-I2SO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
25 | Tetrasaccharide B ΔI2SO3-Isid | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
26 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
27 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
28 | ΔU-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 0 | 0 | 1 | 1 | ||
29 | ΔU2S-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
30 | ΔU2S-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
31 | GlcNS-IdoA2S-GlcNS,6S or GlcNS, | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
6S-IdoA2S-GlcNS | ||||||||||
32 | GlcNS,6S-IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
33 | ΔU-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
34 | ΔU2S-GlcNAc,6S-HexA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
35 | ΔU2S-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
36 | ΔU2S-GlcNS,6S-HexA2S | 0 | 0 | 1 | 0 | 0 | 1 | 1 | ||
37 | ΔU2CS-GlcNS,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
38 | GlcNS,6S-U2CS-GlcNS or GlcNS-U2CS-GlcNS,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
39 | ΔUA2S-GlcNS,6S-GlcA-2,3-anhydro-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
40 | ΔUA-GlcNS-HexA2S,3S-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
41 | 3-O-S Δdp2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
42 | 3-O-S Δdp4(3S,1Ac) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
43 | 3-O-S Δdp4(4S,0Ac) | 0 | 1 | 1 | 0 | 0 | 1 | 0 | ||
44 | 3-O-S Δdp4(4S,1Ac) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | ||
45 | 3-O-S Δdp4(5S,0Ac) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | ||
46 | ΔU- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
47 | ΔU2S- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
48 | GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
49 | ΔU2S-GlcNS-U-Mnt6S | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
50 | ΔU2S-GlcNAc-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
51 | ΔU2S-GlcNS-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
52 | ΔU2S-GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
53 | MntΔdp5(5S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
54 | MntΔdp6(6S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
55 | ΔU-1,6-anhydroGlcNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
56 | ΔU-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
57 | ΔU2S-1,6-anhydroHexNS | 0 | 0 | 0 | 0 | 2 | 0 | 1 | ||
58 | GlcNS,6S-U2S-1,6-anhydroHexNS | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
59 | ΔU2S-GlcNS,6S-U2S-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Table 2 Composition of disaccharide analysis from heparin or low molecular weight heparins(LMWHs)by various methods
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | ΔU-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
2 | ΔU-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
3 | ΔU-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
4 | ΔU2S-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
5 | ΔU-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
6 | ΔU2S-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
7 | ΔU2S-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
8 | ΔU2S-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
9 | ΔGalA-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
10 | ΔGalA-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
12 | IdoA2S-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
13 | U2S-GlcNS or U-GlcNS,6S | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
14 | U2S-GlcNAc or U-GlcNAc,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
15 | IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
16 | ΔU2S-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
17 | ΔU2S-GlcN | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
18 | ΔU-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
19 | ΔU-GlcN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
20 | ΔGlyser | 1 | 1 | 1 | 1 | 0 | 1 | 1 | ||
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
21 | ΔGlyserox1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
22 | ΔGlyserox2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
23 | Other non-endogenous derivatives ΔISO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
24 | Tetrasaccharide A ΔIS-I2SO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
25 | Tetrasaccharide B ΔI2SO3-Isid | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
26 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
27 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
28 | ΔU-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 0 | 0 | 1 | 1 | ||
29 | ΔU2S-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
30 | ΔU2S-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
31 | GlcNS-IdoA2S-GlcNS,6S or GlcNS, | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
6S-IdoA2S-GlcNS | ||||||||||
32 | GlcNS,6S-IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
33 | ΔU-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
34 | ΔU2S-GlcNAc,6S-HexA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
35 | ΔU2S-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
36 | ΔU2S-GlcNS,6S-HexA2S | 0 | 0 | 1 | 0 | 0 | 1 | 1 | ||
37 | ΔU2CS-GlcNS,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
38 | GlcNS,6S-U2CS-GlcNS or GlcNS-U2CS-GlcNS,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
39 | ΔUA2S-GlcNS,6S-GlcA-2,3-anhydro-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
40 | ΔUA-GlcNS-HexA2S,3S-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
41 | 3-O-S Δdp2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
42 | 3-O-S Δdp4(3S,1Ac) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
43 | 3-O-S Δdp4(4S,0Ac) | 0 | 1 | 1 | 0 | 0 | 1 | 0 | ||
44 | 3-O-S Δdp4(4S,1Ac) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | ||
45 | 3-O-S Δdp4(5S,0Ac) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | ||
46 | ΔU- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
47 | ΔU2S- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
48 | GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
49 | ΔU2S-GlcNS-U-Mnt6S | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
50 | ΔU2S-GlcNAc-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
51 | ΔU2S-GlcNS-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
52 | ΔU2S-GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
53 | MntΔdp5(5S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
54 | MntΔdp6(6S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
55 | ΔU-1,6-anhydroGlcNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
56 | ΔU-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
57 | ΔU2S-1,6-anhydroHexNS | 0 | 0 | 0 | 0 | 2 | 0 | 1 | ||
58 | GlcNS,6S-U2S-1,6-anhydroHexNS | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
59 | ΔU2S-GlcNS,6S-U2S-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Fig. 5 Analysis of the exhaustively digestion of enoxaparin by CE-UV[75,77] a. chromatogram of 232 nm[75]; b. schematic of capillary isoelectric focusing coupled with mass spectrometry (cIEF-MS) system[77].
Fig. 6 Oligosaccharide analysis of LMWHs[68,85,86] a. total ion chromatogram of LMWH (tinzaparin) by IPRP-MS[68]; b. total ion chromatogram of LMWH (enoxaparin) by HILIC-MS[85]; c. UV chromatogram (232 nm) of LMWH (enoxaparin) by SEC-MS[86].
Fig. 7 Profiling analysis of enoxaparin using MHC 2D-LC-MS[93] a.1D chromatogram of enoxaparin and the cutting position of each dp from 3 to 12; b.2D extracted compound chromatograms for dp3 to dp12.
|
[1] | LIU Wei, WENG Lingxiao, GAO Mingxia, ZHANG Xiangmin. Applications of high performance liquid chromatography-mass spectrometry in proteomics [J]. Chinese Journal of Chromatography, 2024, 42(7): 601-612. |
[2] | LIANG Fuchao, KE Mi, TIAN Ruijun. A highly sensitive approach for the analysis of tyrosine phosphoproteome in primary T cells [J]. Chinese Journal of Chromatography, 2024, 42(7): 693-701. |
[3] | ZHENG Yi, CAO Cuiyan, GUO Zhimou, YAN Jingyu, LIANG Xinmiao. Applications of chromatography in glycomics [J]. Chinese Journal of Chromatography, 2024, 42(7): 646-657. |
[4] | HE Yu, SHAN Yichu, ZHANG Lihua, ZHANG Zhenbin, LI Yang. An enrichment strategy based on hydrophobic tagging and reversed-phase chromatographic separation for the analysis of lysine-containing peptides [J]. Chinese Journal of Chromatography, 2024, 42(7): 721-729. |
[5] | JIANG Bo, GAO Bo, WEI Shuxian, LIANG Zhen, ZHANG Lihua, ZHANG Yukui. Progress in enrichment methods for protein N-phosphorylation [J]. Chinese Journal of Chromatography, 2024, 42(7): 623-631. |
[6] | XUE Jieying, LIU Zheyi, WANG Fangjun. Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis [J]. Chinese Journal of Chromatography, 2024, 42(7): 681-692. |
[7] | CHEN Xin, QIAN Wenping, CHEN Tianqi, SHAO Lingyun, ZHANG Wenfen, ZHANG Shusheng. Synthesis of fluorinated nitrogen-rich porous organic polymers and removal of perfluorooctanoic acid from water [J]. Chinese Journal of Chromatography, 2024, 42(6): 572-580. |
[8] | XIE Baoxuan, LYU Yang, LIU Zhen. Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems [J]. Chinese Journal of Chromatography, 2024, 42(6): 508-523. |
[9] | ZHENG Desheng, TANG Wenqi, ZHU Jianping, GU Zhiyuan. Preparation and application of chromatographic stationary phase based on two-dimensional materials [J]. Chinese Journal of Chromatography, 2024, 42(6): 524-532. |
[10] | WANG Ziying, SHI Haiwei, MA Congyu, LIU Wenyuan, CHEN Lei, LIU Zhen, YUAN Yaozuo, ZHANG Mei, TANG Sheng. Determination of fatty acid composition after saponification of common oil pharmaceutical excipients by supercritical fluid-evaporative light scattering method and its application in oil identification [J]. Chinese Journal of Chromatography, 2024, 42(6): 581-589. |
[11] | CHEN Jian, XU Kun, GAO Han, ZHAO Rui, HUANG Yanyan. Preparation of peptide-functionalized affinity materials for the highly specific capture and analysis of mitochondria [J]. Chinese Journal of Chromatography, 2024, 42(6): 555-563. |
[12] | KANG Jingyan, SHI Yanping. Recent advances in research on sample pretreatment methods based on supramolecular-derived porous organic polymers [J]. Chinese Journal of Chromatography, 2024, 42(6): 496-507. |
[13] | LIU Jiawei, TANG Changwei, XIA Yiran, BAI Quan. Recent progress of chromatographic techniques for antibody purification [J]. Chinese Journal of Chromatography, 2024, 42(6): 533-543. |
[14] | ZHANG Dandan, ZHU Shuang, HOU Chang, CAI Danni, XIU Guangli, LUAN Shaorong. Simultaneous detection of lower aliphatic amines and conventional cations in atmospheric PM2.5 particulates by ion chromatography [J]. Chinese Journal of Chromatography, 2024, 42(5): 458-464. |
[15] | PENG Maomin, YU Xiaobing, CHEN Lin, XIONG Qingsong, LIU Li, ZHENG Dan, XIA Hong, YU Qiongwei, PENG Xitian. Modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry for detection of cyclopiazonic acid in feeds [J]. Chinese Journal of Chromatography, 2024, 42(5): 445-451. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||