Chinese Journal of Chromatography ›› 2024, Vol. 42 ›› Issue (3): 245-255.DOI: 10.3724/SP.J.1123.2023.07035
• Articles • Previous Articles Next Articles
SU Dongbin1, DONG Linpei2,*(), ZHANG Yunfeng2, ZHAO Peng2, LI Kaikai1,*(
)
Received:
2023-07-31
Online:
2024-03-08
Published:
2024-03-19
Supported by:
CLC Number:
SU Dongbin, DONG Linpei, ZHANG Yunfeng, ZHAO Peng, LI Kaikai. Development of an analytical system for dried blood spots for forensic toxicology: a case study of five common drugs and poisons[J]. Chinese Journal of Chromatography, 2024, 42(3): 245-255.
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Declustering potential/V | Collision energy/eV | LQC/ (ng/mL) | MQC/ (ng/mL) | HQC/ (ng/mL) |
---|---|---|---|---|---|---|---|---|
MA | 2.61 | 150.1 | 91.0* | 40 | 27 | 5 | 50 | 80 |
119.0 | 14 | |||||||
MA-d11 | 2.61 | 161.1 | 97.0* | 20 | 26 | - | - | - |
127.1 | 17 | |||||||
Lidocaine | 2.72 | 235.1 | 58.1 | 40 | 52 | 2 | 50 | 80 |
86.0* | 23 | |||||||
Lidocaine-d10 | 2.72 | 245.1 | 64.0 | 55 | 55 | - | - | - |
96.2* | 27 | |||||||
Ketamine | 2.75 | 238.1 | 125.0* | 40 | 39 | 5 | 50 | 80 |
207.1 | 20 | |||||||
Ketamine-d4 | 2.75 | 242.0 | 129.1* | 40 | 38 | - | - | - |
211.0 | 21 | |||||||
Diazepam | 3.20 | 285.1 | 154.0 | 150 | 37 | 2 | 50 | 80 |
193.0* | 43 | |||||||
Diazepam-d5 | 3.20 | 290.0 | 154.1 | 110 | 39 | - | - | - |
198.2* | 47 | |||||||
Fentanyl | 3.90 | 337.2 | 105.1 | 80 | 43 | 5 | 50 | 80 |
188.2* | 30 | |||||||
Fentanyl-d5 | 3.90 | 342.5 | 105.1 | 80 | 40 | - | - | - |
188.1* | 28 |
Table 1 Retention times, MS parameters, mass concentrations of quality control (QC) samples for the five target substances and internal standards
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Declustering potential/V | Collision energy/eV | LQC/ (ng/mL) | MQC/ (ng/mL) | HQC/ (ng/mL) |
---|---|---|---|---|---|---|---|---|
MA | 2.61 | 150.1 | 91.0* | 40 | 27 | 5 | 50 | 80 |
119.0 | 14 | |||||||
MA-d11 | 2.61 | 161.1 | 97.0* | 20 | 26 | - | - | - |
127.1 | 17 | |||||||
Lidocaine | 2.72 | 235.1 | 58.1 | 40 | 52 | 2 | 50 | 80 |
86.0* | 23 | |||||||
Lidocaine-d10 | 2.72 | 245.1 | 64.0 | 55 | 55 | - | - | - |
96.2* | 27 | |||||||
Ketamine | 2.75 | 238.1 | 125.0* | 40 | 39 | 5 | 50 | 80 |
207.1 | 20 | |||||||
Ketamine-d4 | 2.75 | 242.0 | 129.1* | 40 | 38 | - | - | - |
211.0 | 21 | |||||||
Diazepam | 3.20 | 285.1 | 154.0 | 150 | 37 | 2 | 50 | 80 |
193.0* | 43 | |||||||
Diazepam-d5 | 3.20 | 290.0 | 154.1 | 110 | 39 | - | - | - |
198.2* | 47 | |||||||
Fentanyl | 3.90 | 337.2 | 105.1 | 80 | 43 | 5 | 50 | 80 |
188.2* | 30 | |||||||
Fentanyl-d5 | 3.90 | 342.5 | 105.1 | 80 | 40 | - | - | - |
188.1* | 28 |
Fig. 1 Relative peak areas of the targets in dried blood spots (DBS) under different production methods (n=6) a. substrates; b. drying conditions. RT: room temperature.
Compound | Spiked level | Dried blood spots | Whole-blood | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Recovery/% | Matrix effect/% | RSD/% | Recovery/% | Matrix effect/% | RSD/% | |||||
MA | LQC | 96.19 | 91.01 | 4.29 | 107.36 | 83.21 | 1.24 | |||
MQC | 113.55 | 79.06 | 3.03 | 89.95 | 84.63 | 2.50 | ||||
HQC | 103.08 | 87.63 | 1.63 | 97.31 | 90.87 | 2.00 | ||||
Lidocaine | LQC | 102.12 | 104.09 | 2.74 | 99.52 | 93.46 | 1.70 | |||
MQC | 102.53 | 77.54 | 4.65 | 86.79 | 87.15 | 5.85 | ||||
HQC | 91.43 | 87.14 | 4.21 | 91.78 | 85.61 | 4.97 | ||||
Ketamine | LQC | 89.76 | 88.29 | 0.47 | 87.67 | 101.25 | 0.56 | |||
MQC | 97.34 | 81.07 | 1.60 | 89.27 | 109.33 | 2.67 | ||||
HQC | 93.90 | 91.13 | 4.13 | 86.37 | 100.33 | 1.56 | ||||
Fentanyl | LQC | 104.88 | 104.81 | 2.94 | 108.73 | 108.66 | 0.65 | |||
MQC | 111.22 | 87.22 | 5.44 | 92.65 | 86.00 | 0.81 | ||||
HQC | 97.32 | 94.20 | 1.88 | 96.31 | 97.96 | 0.15 | ||||
Diazepam | LQC | 94.31 | 87.61 | 4.94 | 106.18 | 86.33 | 0.24 | |||
MQC | 104.72 | 76.95 | 3.62 | 104.24 | 88.71 | 2.42 | ||||
HQC | 106.80 | 85.17 | 5.01 | 107.40 | 94.52 | 10.75 |
Table 2 Extraction recoveries and matrix effects of the five targets in dried blood spots and whole-blood samples (n=3)
Compound | Spiked level | Dried blood spots | Whole-blood | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Recovery/% | Matrix effect/% | RSD/% | Recovery/% | Matrix effect/% | RSD/% | |||||
MA | LQC | 96.19 | 91.01 | 4.29 | 107.36 | 83.21 | 1.24 | |||
MQC | 113.55 | 79.06 | 3.03 | 89.95 | 84.63 | 2.50 | ||||
HQC | 103.08 | 87.63 | 1.63 | 97.31 | 90.87 | 2.00 | ||||
Lidocaine | LQC | 102.12 | 104.09 | 2.74 | 99.52 | 93.46 | 1.70 | |||
MQC | 102.53 | 77.54 | 4.65 | 86.79 | 87.15 | 5.85 | ||||
HQC | 91.43 | 87.14 | 4.21 | 91.78 | 85.61 | 4.97 | ||||
Ketamine | LQC | 89.76 | 88.29 | 0.47 | 87.67 | 101.25 | 0.56 | |||
MQC | 97.34 | 81.07 | 1.60 | 89.27 | 109.33 | 2.67 | ||||
HQC | 93.90 | 91.13 | 4.13 | 86.37 | 100.33 | 1.56 | ||||
Fentanyl | LQC | 104.88 | 104.81 | 2.94 | 108.73 | 108.66 | 0.65 | |||
MQC | 111.22 | 87.22 | 5.44 | 92.65 | 86.00 | 0.81 | ||||
HQC | 97.32 | 94.20 | 1.88 | 96.31 | 97.96 | 0.15 | ||||
Diazepam | LQC | 94.31 | 87.61 | 4.94 | 106.18 | 86.33 | 0.24 | |||
MQC | 104.72 | 76.95 | 3.62 | 104.24 | 88.71 | 2.42 | ||||
HQC | 106.80 | 85.17 | 5.01 | 107.40 | 94.52 | 10.75 |
Compound | LOD/ (ng/mL) | LOQ/ (ng/mL) | Linear range/ (ng/mL) | Calibration curve | Coefficient of determination (r2) |
---|---|---|---|---|---|
MA | 0.5 | 2 | 2-100 | DBS: y=0.28675x+0.06452 | 0.9994 |
blood: y=0.25514x+0.00928 | 0.9983 | ||||
Lidocaine | 0.2 | 0.5 | 0.5-100 | DBS: y=0.18878x+0.04239 | 0.9996 |
blood: y=0.17963x+0.01635 | 0.9994 | ||||
Ketamine | 0.5 | 2 | 2-100 | DBS: y=0.26189x+0.05804 | 0.9996 |
blood: y=0.28151x+0.01546 | 0.9993 | ||||
Fentanyl | 0.2 | 0.5 | 0.5-100 | DBS: y=0.28675x+0.06452 | 0.9990 |
blood: y=0.30969x+0.03796 | 0.9997 | ||||
Diazepam | 0.5 | 2 | 2-100 | DBS: y=0.14477x+0.06180 | 0.9993 |
blood: y=0.14490x+0.02882 | 0.9985 |
Table 3 Linear ranges and calibration curves for the five targets in DBS and whole-blood
Compound | LOD/ (ng/mL) | LOQ/ (ng/mL) | Linear range/ (ng/mL) | Calibration curve | Coefficient of determination (r2) |
---|---|---|---|---|---|
MA | 0.5 | 2 | 2-100 | DBS: y=0.28675x+0.06452 | 0.9994 |
blood: y=0.25514x+0.00928 | 0.9983 | ||||
Lidocaine | 0.2 | 0.5 | 0.5-100 | DBS: y=0.18878x+0.04239 | 0.9996 |
blood: y=0.17963x+0.01635 | 0.9994 | ||||
Ketamine | 0.5 | 2 | 2-100 | DBS: y=0.26189x+0.05804 | 0.9996 |
blood: y=0.28151x+0.01546 | 0.9993 | ||||
Fentanyl | 0.2 | 0.5 | 0.5-100 | DBS: y=0.28675x+0.06452 | 0.9990 |
blood: y=0.30969x+0.03796 | 0.9997 | ||||
Diazepam | 0.5 | 2 | 2-100 | DBS: y=0.14477x+0.06180 | 0.9993 |
blood: y=0.14490x+0.02882 | 0.9985 |
Compound | Spiked level | DBS | Whole-blood | ||||||
---|---|---|---|---|---|---|---|---|---|
RSDs/% | Bias/% | RSDs/% | Bias/% | ||||||
Intra-day | Inter-day | Intra-day | Inter-day | ||||||
MA | LOQ | 3.62 | 8.95 | 0.26 | 5.03 | 5.93 | 6.27 | ||
LQC | 4.53 | 5.15 | -1.75 | 5.32 | 4.53 | -3.81 | |||
MQC | 2.80 | 5.48 | 1.30 | 3.39 | 3.27 | -2.83 | |||
HQC | 5.51 | 5.64 | -7.39 | 3.05 | 3.06 | 0.67 | |||
Lidocaine | LOQ | 5.96 | 5.46 | 10.10 | 4.38 | 4.12 | 5.19 | ||
LQC | 1.79 | 5.04 | 2.66 | 1.47 | 1.57 | 4.68 | |||
MQC | 1.45 | 2.58 | 0.09 | 1.85 | 2.30 | -2.50 | |||
HQC | 3.86 | 4.48 | -5.00 | 1.90 | 2.06 | -5.95 | |||
Ketamine | LOQ | 1.89 | 8.65 | 4.30 | 4.11 | 4.54 | 10.07 | ||
LQC | 3.39 | 4.59 | -1.06 | 3.53 | 4.09 | -2.74 | |||
MQC | 1.45 | 3.82 | -0.30 | 4.05 | 3.75 | 2.89 | |||
HQC | 1.73 | 5.33 | -7.75 | 2.00 | 2.06 | 1.62 | |||
Fentanyl | LOQ | 1.24 | 2.14 | -6.36 | 4.86 | 4.23 | 1.78 | ||
LQC | 2.39 | 6.97 | 5.08 | 4.24 | 4.58 | 4.77 | |||
MQC | 1.67 | 3.21 | 3.31 | 2.15 | 2.04 | 0.04 | |||
HQC | 4.05 | 4.17 | -3.41 | 3.25 | 3.39 | -4.00 | |||
Diazepam | LOQ | 3.66 | 9.86 | 5.27 | 3.69 | 4.46 | 7.04 | ||
LQC | 3.11 | 4.95 | 0.63 | 1.58 | 1.63 | -6.74 | |||
MQC | 4.41 | 5.64 | 3.75 | 3.37 | 3.04 | 2.86 | |||
HQC | 3.95 | 5.88 | -1.75 | 3.95 | 4.42 | 1.54 |
Table 4 Precision and accuracy (Bias) of the five targets in DBS and whole-blood samples (n=5)
Compound | Spiked level | DBS | Whole-blood | ||||||
---|---|---|---|---|---|---|---|---|---|
RSDs/% | Bias/% | RSDs/% | Bias/% | ||||||
Intra-day | Inter-day | Intra-day | Inter-day | ||||||
MA | LOQ | 3.62 | 8.95 | 0.26 | 5.03 | 5.93 | 6.27 | ||
LQC | 4.53 | 5.15 | -1.75 | 5.32 | 4.53 | -3.81 | |||
MQC | 2.80 | 5.48 | 1.30 | 3.39 | 3.27 | -2.83 | |||
HQC | 5.51 | 5.64 | -7.39 | 3.05 | 3.06 | 0.67 | |||
Lidocaine | LOQ | 5.96 | 5.46 | 10.10 | 4.38 | 4.12 | 5.19 | ||
LQC | 1.79 | 5.04 | 2.66 | 1.47 | 1.57 | 4.68 | |||
MQC | 1.45 | 2.58 | 0.09 | 1.85 | 2.30 | -2.50 | |||
HQC | 3.86 | 4.48 | -5.00 | 1.90 | 2.06 | -5.95 | |||
Ketamine | LOQ | 1.89 | 8.65 | 4.30 | 4.11 | 4.54 | 10.07 | ||
LQC | 3.39 | 4.59 | -1.06 | 3.53 | 4.09 | -2.74 | |||
MQC | 1.45 | 3.82 | -0.30 | 4.05 | 3.75 | 2.89 | |||
HQC | 1.73 | 5.33 | -7.75 | 2.00 | 2.06 | 1.62 | |||
Fentanyl | LOQ | 1.24 | 2.14 | -6.36 | 4.86 | 4.23 | 1.78 | ||
LQC | 2.39 | 6.97 | 5.08 | 4.24 | 4.58 | 4.77 | |||
MQC | 1.67 | 3.21 | 3.31 | 2.15 | 2.04 | 0.04 | |||
HQC | 4.05 | 4.17 | -3.41 | 3.25 | 3.39 | -4.00 | |||
Diazepam | LOQ | 3.66 | 9.86 | 5.27 | 3.69 | 4.46 | 7.04 | ||
LQC | 3.11 | 4.95 | 0.63 | 1.58 | 1.63 | -6.74 | |||
MQC | 4.41 | 5.64 | 3.75 | 3.37 | 3.04 | 2.86 | |||
HQC | 3.95 | 5.88 | -1.75 | 3.95 | 4.42 | 1.54 |
Sample No. | Temperature/℃ | Relative humidity/% | Seal |
---|---|---|---|
S1 | 25-28 (RT) | 40 | unsealed |
S2 | 25-28 (RT) | 10 | sealed |
S3 | 4 | 40 | unsealed |
S4 | 4 | 10 | sealed |
S5 | -20 | 40 | unsealed |
S6 | -20 | 10 | sealed |
Table 5 Storage conditions for dried blood spots
Sample No. | Temperature/℃ | Relative humidity/% | Seal |
---|---|---|---|
S1 | 25-28 (RT) | 40 | unsealed |
S2 | 25-28 (RT) | 10 | sealed |
S3 | 4 | 40 | unsealed |
S4 | 4 | 10 | sealed |
S5 | -20 | 40 | unsealed |
S6 | -20 | 10 | sealed |
Fig. 6 (a) Differences in fentanyl concentrations between whole-blood and DBS and (b) Passing-Bablok analysis of fentanyl concentrations in DBS with whole-blood RD: relative difference; CI: confidence interval; LOA: limits of agreement. RD=|XDBS -Xblood|/Xmean×100%; Xmean=(Xblood+XDBS)/2; Xblood is mass concentration of analyte in whole-blood, and XDBS is mass concentration of analyte in DBS.
|
[1] | SONG Wei, LIU Kaiyong, CHEN Lijun, WANG Yu, NI Yachao, HU Yarong, JIA Xueying, HAN Fang, LIU Yuxin, ZHOU Dianbing. Determination of 118 pesticide residues in urine by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(1): 52-63. |
[2] | LIN Qiang, YANG Chao, LI Meili, WANG Jia, HOU Hanran, SHAO Bing, NIU Yumin. Determination of 14 paralytic shellfish toxins in plasma and urine by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 274-280. |
[3] | XIAN Ruiqing, HANG Baojian, GONG Liping, WANG Congcong, ZHANG Xunjie, PENG Li, SHI Feng. Determination of the species origin and thrombin-like enzyme content of Bothrops atrox venom by ultra-high performance liquid chromatography-tandem mass spectrometry based on marker peptide [J]. Chinese Journal of Chromatography, 2022, 40(9): 810-816. |
[4] | GONG Liping, HANG Baojian, XIAN Ruiqing, YANG Mingzheng, ZHANG Xunjie, WEI Xia. Determination of dimethyl sulfate genotoxic impurities in tertiary amine drugs by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(9): 854-859. |
[5] | YANG Xiao, WAN Yiwen, HUANG Huawei, SUO Wenwen, XIAO Wei, LI Xiaoling. Determination of five nitroimidazoles and six benzodiazepines in aquatic products using ultra-high performance liquid chromatography-tandem mass spectrometry coupled with dispersive solid-phase extraction [J]. Chinese Journal of Chromatography, 2022, 40(7): 625-633. |
[6] | YANG Lixia, HUANG Xiaobei, ZENG Xike, YI Zi. Determination of chlorpropham residues in animal-derived foods by solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(1): 41-47. |
[7] | HU Yu, ZHU Qingqing, HU Ligang, LIAO Chunyang. Simultaneous determination of 30 antibiotics in soil by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(8): 878-888. |
[8] | LIN Qiang, YANG Chao, LI Meili, WANG Jia, HOU Hanran, SHAO Bing, NIU Yumin. Simultaneous determination of 12 lipophilic shellfish toxins in plasma and urine by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(4): 399-405. |
[9] | ZOU Pan, DUAN Shengxing, HU Xizhou, ZHENG Dan, XIA Zhenzhen, XIA Hong, PENG Xitian. Determination of bongkrekic acid in tremella and auricularia auricular by improved QuEChERS method combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(12): 1368-1373. |
[10] | GONG Liping, SHI Feng, SU Shufang, XIE Qiangsheng, XIAN Ruiqing, HANG Baojian, ZHAO Yanxia. Determination of donkey skin ingredients in Asini Corii Colla by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(11): 1255-1260. |
[11] | ZHAO Huinan, ZHANG Yanxia, XUE Xia, DAI Kun, ZHENG Wenjing, MA Cheng, ZHU Jianhua, LIU Yanming, ZHANG Feng. Analysis of nine antioxidants in vegetable oils by high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2020, 38(7): 841-846. |
[12] | ZHANG Wenhuan, LIU Pingxiang, QIU Jing, JIA Qi, QIAN Yongzhong. Rapid simultaneous determination of 10 nutrients in ginger by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(10): 1105-1111. |
[13] | Narasimha S LAKKA, Chandrasekar KUPPAN, Parthasarathy RANGASAMY. Impurity profile of macitentan in tablet dosage form using a stability-indicating high performance liquid chromatography method and forced degradation study [J]. Chinese Journal of Chromatography, 2019, 37(1): 100-110. |
[14] | SONG Yue, ZHANG Xining, ZHANG Wei, QIAN Yongzhong, QIU Jing. Stereoselective effects of ibuprofen on adult zebrafish brain tissues based on sphingolipidomics [J]. Chinese Journal of Chromatography, 2018, 36(11): 1088-1098. |
[15] | FANG Congrong, GAO Jie, WANG Yuxin, ZHOU Shuang, ZHAO Yunfeng, CHEN Dawei, GUO Qilei. Determination of 125 veterinary drugs residues in eggs by QuEChERS-ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(11): 1119-1131. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||