Chinese Journal of Chromatography ›› 2026, Vol. 44 ›› Issue (2): 151-168.DOI: 10.3724/SP.J.1123.2025.06034
• Reviews • Previous Articles Next Articles
YAN Jingyi1,2, HUANG Jingying2, PENG Siyuan2, MAN Mingsan2, SUN Dani3, LIU Ping3, CHEN Lingxin2, LI Jinhua2,*(
), FAN Huaying1,*(
)
Received:2025-06-30
Online:2026-02-08
Published:2026-02-05
Contact:
LI Jinhua, FAN Huaying
Supported by:CLC Number:
YAN Jingyi, HUANG Jingying, PENG Siyuan, MAN Mingsan, SUN Dani, LIU Ping, CHEN Lingxin, LI Jinhua, FAN Huaying. Applications of molecularly imprinted solid-phase microextraction coupled with chromatography/mass spectrometry for determination of drug residues[J]. Chinese Journal of Chromatography, 2026, 44(2): 151-168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2025.06034
| Analytes | Template | Polymerizationmethod | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| Five MACs | ROX | - | surface imprinting | in-tip SPME | ESI-MS | 0.05-100 ng/g | 0.003-0.005 ng/g | 73.4-98.1 | drinking water, honey, milk | [ |
| Four MACs | piramycin | - | stimuli-responsive imprinting | coated fiber SPME | HPLC-UV | 0.5-50 μg/mL | 23.8-85.4 μg/kg | 81.8-119.1 | honey | [ |
| Four SAs | SMM | emulsion polymerization | surface imprinting | SBSE | HPLC-MS/MS | 10-1000 μg/L | 1.5-3.4 μg/L | 80-89 | animal feeds | [ |
| Four SAs | silver sulfadiazine | - | nano-imprinting | TFME | HPLC-UV | 0.01-50 μg/L | 0.003 μg/L | 95.9-101.0 | milk, eggs and chicken meat | [ |
| Seven TCs | minocycline | - | nano-imprinting | DSPME | UHPLC-PDA | 0.5-200 ng/mL | 0.2-0.6 ng/g | 69.6-94.7 | chicken muscle | [ |
| Five TCs | TC | bulk polymerization | multi-functional monomer imprinting | coated fiber SPME | HPLC-UV | 5-1000 μg/L | 0.38-0.72 μg/kg | 77.3-104.4 | milk, chicken, fish | [ |
| Six aminoglycosides | TOB | precipitation polymerization | - | coated fiber SPME | UHPLC-MS/MS | 0.1-500 μg/kg | 0.002-0.02 μg/kg | 86.2-115.3 | milk, honey | [ |
| Five estrogens | E2 | in situ polymerization | - | IT-SPME | HPLC-DAD | 1.00-200.00 μg/L | 0.33 μg/L | 74.75-119.41 | milk, yogurt | [ |
| E2 | E2 | in situ polymerization | - | IT-SPME | HPLC-UV | 0.10-200.00 μg/kg | 0.03 μg/kg | 79.61-105.70 | meat | [ |
| Seven BZs | 2-aminobenzimidazole | - | dummy template imprinting | DSPME | UHPLC-PDA | 5-2000 ng/mL | 0.2-0.5 ng/g | 92.3-97.1 | beef | [ |
| β-Agonist | clenbuterol | - | surface imprinting | SBSE | HPLC-MS/MS | 0.5-35 μg/L | 0.05-0.15 μg/kg | 75.8-97.9 | pork | [ |
| 2,4-D | 2,4-D | - | surface imprinting | TFME | HPLC-UV | 1.0-10 mg/L | 0.03 mg/L | 88.8-96.6 | milk | [ |
| Six neonicotinoids | CLT | - | - | IT-SPME | HPLC-DAD | 50-4000 μg/L | 0.03-0.58 μg/L | 85.4-116.8 | tea, honey | [ |
| Four pyrethroids | enpropathrin, deltamethrin, cyfluthrin, bifenthrin | - | surface imprinting | coated fiber SPME | HPLC-DAD | 0.50-200.00 μg/L | 0.16-0.33 μg/L | 72.74-119.66 | tea | [ |
| Difenoconazole | difenoconazole | sol-gel method | surface imprinting | coated fiber SPME | GC-ECD | 0.01-1 ng/mL | 0.002 ng/mL | 73-103 | wheat, cucumber, apple | [ |
| Five SUHs | triflusulfuron-methyl | in situ polymerization | - | IT-SPME | HPLC-DAD | 0.10-200.0 μg/L | 0.014-0.058 μg/L | 75.2-102 | spiked soya milk, grape juice | [ |
| Five OPPs | diazinon, parathion-methyl, isocarbophos | sol-gel method | multi-template imprinted | coated fiber SPME | GC-NPD | 0.1-100 μg/kg | 0.0052-0.23 μg/kg | 75.1-123.2 | spiked apple, cucumber, Chinese cabbage, cherry tomato | [ |
| Five OPPs | diazinon, isocarbophos | sol-gel method | - | coated fiber SPME | GC-NPD | 0.1-1000 μg/kg | 0.0028-0.0436 μg/kg | 78.7-122.8 | apple, potato | [ |
| Five OPPs | ethion | - | stimuli-responsive imprinting | DSPME | GC-FID | 0.50-2000 μg/L | 0.25-0.50 μg/L | 93-117 | fruit, vegetable | [ |
| Pyriproxyfen | pyriproxyfen | sol-gel method | multi-functional monomer imprinting | DSPME | HPLC-DAD | 5.25×10-5-43 μg/mL | 4.93×10-5 μg/mL | 95.9-97 | strawberry | [ |
| Thiabendazole and carbendazim | thiabendazole | sol-gel method | surface imprinting | SBSE | HPLC-DAD | 25-1000 μg/L | 0.10-0.13 mg/kg | 21-33 | orange | [ |
| Paraquat | paraquat | sol-gel method | - | SBSE | HPLC-UV | 0.02-0.85 mg kg | 0.005 mg/kg | 70.0-96.1 | lettuce | [ |
| Fipronil | fipronil | precipitation polymerization | - | DSPME | HPLC-DAD | 6×10-3-45 μg/mL | 5.64×10-6 μg/mL | 94.6-96.5 | milk | [ |
| Quercetin | quercetin | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.05-100 μg/mL | 9.94 ng/mL | 94.20-98.50 | tea, coffees | [ |
| Four amphetamine derivatives | dextroamphetamine | - | nano-imprinting | IT-SPME | GC-MS | 0.1-400 μg/L | 0.023-0.033 μg/L | 96.2-98.9 | beverage, snack | [ |
| Amphetamines and modafinil | amphetamines, modafinil | - | - | IT-SPME | GC-MS | 0.1-400 μg/L | 0.023-0.033 μg/L | 95.14-104.63 | medicinal supplements | [ |
Table 1 Applications of molecularly imprinted solid-phase microextraction (MI-SPME) coupled with chromatography/MS for the determination of drug residues in food samples
| Analytes | Template | Polymerizationmethod | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| Five MACs | ROX | - | surface imprinting | in-tip SPME | ESI-MS | 0.05-100 ng/g | 0.003-0.005 ng/g | 73.4-98.1 | drinking water, honey, milk | [ |
| Four MACs | piramycin | - | stimuli-responsive imprinting | coated fiber SPME | HPLC-UV | 0.5-50 μg/mL | 23.8-85.4 μg/kg | 81.8-119.1 | honey | [ |
| Four SAs | SMM | emulsion polymerization | surface imprinting | SBSE | HPLC-MS/MS | 10-1000 μg/L | 1.5-3.4 μg/L | 80-89 | animal feeds | [ |
| Four SAs | silver sulfadiazine | - | nano-imprinting | TFME | HPLC-UV | 0.01-50 μg/L | 0.003 μg/L | 95.9-101.0 | milk, eggs and chicken meat | [ |
| Seven TCs | minocycline | - | nano-imprinting | DSPME | UHPLC-PDA | 0.5-200 ng/mL | 0.2-0.6 ng/g | 69.6-94.7 | chicken muscle | [ |
| Five TCs | TC | bulk polymerization | multi-functional monomer imprinting | coated fiber SPME | HPLC-UV | 5-1000 μg/L | 0.38-0.72 μg/kg | 77.3-104.4 | milk, chicken, fish | [ |
| Six aminoglycosides | TOB | precipitation polymerization | - | coated fiber SPME | UHPLC-MS/MS | 0.1-500 μg/kg | 0.002-0.02 μg/kg | 86.2-115.3 | milk, honey | [ |
| Five estrogens | E2 | in situ polymerization | - | IT-SPME | HPLC-DAD | 1.00-200.00 μg/L | 0.33 μg/L | 74.75-119.41 | milk, yogurt | [ |
| E2 | E2 | in situ polymerization | - | IT-SPME | HPLC-UV | 0.10-200.00 μg/kg | 0.03 μg/kg | 79.61-105.70 | meat | [ |
| Seven BZs | 2-aminobenzimidazole | - | dummy template imprinting | DSPME | UHPLC-PDA | 5-2000 ng/mL | 0.2-0.5 ng/g | 92.3-97.1 | beef | [ |
| β-Agonist | clenbuterol | - | surface imprinting | SBSE | HPLC-MS/MS | 0.5-35 μg/L | 0.05-0.15 μg/kg | 75.8-97.9 | pork | [ |
| 2,4-D | 2,4-D | - | surface imprinting | TFME | HPLC-UV | 1.0-10 mg/L | 0.03 mg/L | 88.8-96.6 | milk | [ |
| Six neonicotinoids | CLT | - | - | IT-SPME | HPLC-DAD | 50-4000 μg/L | 0.03-0.58 μg/L | 85.4-116.8 | tea, honey | [ |
| Four pyrethroids | enpropathrin, deltamethrin, cyfluthrin, bifenthrin | - | surface imprinting | coated fiber SPME | HPLC-DAD | 0.50-200.00 μg/L | 0.16-0.33 μg/L | 72.74-119.66 | tea | [ |
| Difenoconazole | difenoconazole | sol-gel method | surface imprinting | coated fiber SPME | GC-ECD | 0.01-1 ng/mL | 0.002 ng/mL | 73-103 | wheat, cucumber, apple | [ |
| Five SUHs | triflusulfuron-methyl | in situ polymerization | - | IT-SPME | HPLC-DAD | 0.10-200.0 μg/L | 0.014-0.058 μg/L | 75.2-102 | spiked soya milk, grape juice | [ |
| Five OPPs | diazinon, parathion-methyl, isocarbophos | sol-gel method | multi-template imprinted | coated fiber SPME | GC-NPD | 0.1-100 μg/kg | 0.0052-0.23 μg/kg | 75.1-123.2 | spiked apple, cucumber, Chinese cabbage, cherry tomato | [ |
| Five OPPs | diazinon, isocarbophos | sol-gel method | - | coated fiber SPME | GC-NPD | 0.1-1000 μg/kg | 0.0028-0.0436 μg/kg | 78.7-122.8 | apple, potato | [ |
| Five OPPs | ethion | - | stimuli-responsive imprinting | DSPME | GC-FID | 0.50-2000 μg/L | 0.25-0.50 μg/L | 93-117 | fruit, vegetable | [ |
| Pyriproxyfen | pyriproxyfen | sol-gel method | multi-functional monomer imprinting | DSPME | HPLC-DAD | 5.25×10-5-43 μg/mL | 4.93×10-5 μg/mL | 95.9-97 | strawberry | [ |
| Thiabendazole and carbendazim | thiabendazole | sol-gel method | surface imprinting | SBSE | HPLC-DAD | 25-1000 μg/L | 0.10-0.13 mg/kg | 21-33 | orange | [ |
| Paraquat | paraquat | sol-gel method | - | SBSE | HPLC-UV | 0.02-0.85 mg kg | 0.005 mg/kg | 70.0-96.1 | lettuce | [ |
| Fipronil | fipronil | precipitation polymerization | - | DSPME | HPLC-DAD | 6×10-3-45 μg/mL | 5.64×10-6 μg/mL | 94.6-96.5 | milk | [ |
| Quercetin | quercetin | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.05-100 μg/mL | 9.94 ng/mL | 94.20-98.50 | tea, coffees | [ |
| Four amphetamine derivatives | dextroamphetamine | - | nano-imprinting | IT-SPME | GC-MS | 0.1-400 μg/L | 0.023-0.033 μg/L | 96.2-98.9 | beverage, snack | [ |
| Amphetamines and modafinil | amphetamines, modafinil | - | - | IT-SPME | GC-MS | 0.1-400 μg/L | 0.023-0.033 μg/L | 95.14-104.63 | medicinal supplements | [ |
| Analytes | Template | Polymerization method | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| Four triazines | propazine | - | dummy template imprinting | IT-SPME | HPLC-DAD | 100-1000 μg/L | 6.2-15.7 ng/g | 75.7-120.1 | soil | [ |
| Sulfamethoxazole | sulfamethoxazole | - | nano-imprinting | DSPME | HPLC-UV | 7-900 ng/mL | 2.0 ng/mL | 94.2-98.2 | spiked water | [ |
| Four FQs | ENRO | - | - | IT-SPME | HPLC-UV | 10-500 μg/L | 0.1-10 μg/L | 9.4-24.5 | surface water, groundwater, urine | [ |
| NOR | NOR | precipitation polymerization | surface imprinting | TFME | HPLC-DAD | - | 0.15 μg/L | 90.1-102.7 | seawater, fish | [ |
| Phenobarbital | phenobarbital | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.01-4 μg/mL | 7.5 ng/mL | 92.4-98.0 | spiked river, well water | [ |
| Aniline | aniline | suspension polymerizatio | surface imprinting | DSPME | HPLC-MS | 1-200 ng/mL | 1 ng/mL | 62 | textile wastewater | [ |
| Diazepam | diazepam | bulk polymerization | - | SBSE | UHPLC-MS/MS | 0.05-500 μg/L | 0.4 ng/L | 84-102 | natural water | [ |
| Naproxen | s-naproxen | - | - | SBSE | HPLC-DAD | 0.01-200 μg/L | 0.005 μg/L | 83.98-118.88 | lake water, river water | [ |
Table 2 Applications of MI-SPME coupled with chromatography/MS for the determination of drug residues in environmental samples
| Analytes | Template | Polymerization method | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| Four triazines | propazine | - | dummy template imprinting | IT-SPME | HPLC-DAD | 100-1000 μg/L | 6.2-15.7 ng/g | 75.7-120.1 | soil | [ |
| Sulfamethoxazole | sulfamethoxazole | - | nano-imprinting | DSPME | HPLC-UV | 7-900 ng/mL | 2.0 ng/mL | 94.2-98.2 | spiked water | [ |
| Four FQs | ENRO | - | - | IT-SPME | HPLC-UV | 10-500 μg/L | 0.1-10 μg/L | 9.4-24.5 | surface water, groundwater, urine | [ |
| NOR | NOR | precipitation polymerization | surface imprinting | TFME | HPLC-DAD | - | 0.15 μg/L | 90.1-102.7 | seawater, fish | [ |
| Phenobarbital | phenobarbital | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.01-4 μg/mL | 7.5 ng/mL | 92.4-98.0 | spiked river, well water | [ |
| Aniline | aniline | suspension polymerizatio | surface imprinting | DSPME | HPLC-MS | 1-200 ng/mL | 1 ng/mL | 62 | textile wastewater | [ |
| Diazepam | diazepam | bulk polymerization | - | SBSE | UHPLC-MS/MS | 0.05-500 μg/L | 0.4 ng/L | 84-102 | natural water | [ |
| Naproxen | s-naproxen | - | - | SBSE | HPLC-DAD | 0.01-200 μg/L | 0.005 μg/L | 83.98-118.88 | lake water, river water | [ |
| Analytes | Template | Polymerization method | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| TP | TP | - | surface imprinting | TFME | IMS | 3.3-200 μmol/L | 1.1 μmol/L | 81-94 | human serum | [ |
| Chrysophanol | chrysophanol | radical polymerization | surface imprinting | coated fiber SPME | HPLC-UV | 0.007-0.2 μg/mL | 2.68 ng/mL | 94.01-96.20 | urine | [ |
| Phenobarbital | phenobarbital | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.02-100 μg/mL | 9.88 ng/mL | 94.26-98.50 | urine | [ |
| Propranolol | propranolol | RAFT polymerization | - | DSPME | HPLC-UV | 0.015-100 μmol/L | 0.002 μmol/L | 85.2-97.4 | bovine serum | [ |
| CBZ | CBZ | in situ polymerization | nano-imprinting | IT-SPME | HPLC-UV | 0.01-500 μg/L | 0.05 μg/L | 92.0-114.0 | urine, plasma | [ |
| OXY | OXY | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 1-2000 ng/mL | 0.80 ng/mL | 92.50-103.20 | urine | [ |
| Harmaline | harmaline | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 1.0-4000 ng/mL | 0.526 ng/mL | 90.00-99.25 | peganum harmala | [ |
| Hymol and carvacrol | hymol, carvacrol | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 0.40-5000 ng/mL | 0.042 ng/mL | 96.6-105.4 | summer savoury, Origanum majorana, Origanum vulgare | [ |
| CAP | CAP | RAFT polymerization | stimuli-responsive imprinting | DSPME | HPLC-UV | 5-2000 ng/mL | 1.9 ng/mL | 93.41-102.50 | plasma | [ |
| MLT | MLT | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 0.2-4200 ng/mL | 0.046 ng/mL | 93.07-104.1 | urine, plasma | [ |
| CBD | CBD | in situ polymerization | - | IT-SPME | UHPLC-MS/MS | 10-300 ng/mL | - | 53 | plasma | [ |
| Digoxin | digoxin | in situ polymerization | surface imprinting | coated fiber SPME | HPLC-UV | 0.1-10 ng/mL | 0.03 ng/mL | - | urine, serum | [ |
| Valproic acid | valproic acid | - | - | coated fiber SPME | GC-FID | 0.03-100 μg/L | 0.01 μg/L | 90.5-7.5 | human serum | [ |
Table 3 Applications of MI-SPME coupled with chromatography/MS for the determination of drug residues in biological samples
| Analytes | Template | Polymerization method | Imprinting technique and strategy | SPME mode | Chromatography/MS | Linear range | LOD | Recovery/% | Real samples | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| TP | TP | - | surface imprinting | TFME | IMS | 3.3-200 μmol/L | 1.1 μmol/L | 81-94 | human serum | [ |
| Chrysophanol | chrysophanol | radical polymerization | surface imprinting | coated fiber SPME | HPLC-UV | 0.007-0.2 μg/mL | 2.68 ng/mL | 94.01-96.20 | urine | [ |
| Phenobarbital | phenobarbital | sol-gel method | surface imprinting | coated fiber SPME | HPLC-UV | 0.02-100 μg/mL | 9.88 ng/mL | 94.26-98.50 | urine | [ |
| Propranolol | propranolol | RAFT polymerization | - | DSPME | HPLC-UV | 0.015-100 μmol/L | 0.002 μmol/L | 85.2-97.4 | bovine serum | [ |
| CBZ | CBZ | in situ polymerization | nano-imprinting | IT-SPME | HPLC-UV | 0.01-500 μg/L | 0.05 μg/L | 92.0-114.0 | urine, plasma | [ |
| OXY | OXY | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 1-2000 ng/mL | 0.80 ng/mL | 92.50-103.20 | urine | [ |
| Harmaline | harmaline | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 1.0-4000 ng/mL | 0.526 ng/mL | 90.00-99.25 | peganum harmala | [ |
| Hymol and carvacrol | hymol, carvacrol | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 0.40-5000 ng/mL | 0.042 ng/mL | 96.6-105.4 | summer savoury, Origanum majorana, Origanum vulgare | [ |
| CAP | CAP | RAFT polymerization | stimuli-responsive imprinting | DSPME | HPLC-UV | 5-2000 ng/mL | 1.9 ng/mL | 93.41-102.50 | plasma | [ |
| MLT | MLT | - | stimuli-responsive imprinting | DSPME | HPLC-UV | 0.2-4200 ng/mL | 0.046 ng/mL | 93.07-104.1 | urine, plasma | [ |
| CBD | CBD | in situ polymerization | - | IT-SPME | UHPLC-MS/MS | 10-300 ng/mL | - | 53 | plasma | [ |
| Digoxin | digoxin | in situ polymerization | surface imprinting | coated fiber SPME | HPLC-UV | 0.1-10 ng/mL | 0.03 ng/mL | - | urine, serum | [ |
| Valproic acid | valproic acid | - | - | coated fiber SPME | GC-FID | 0.03-100 μg/L | 0.01 μg/L | 90.5-7.5 | human serum | [ |
|
| [1] | SONG Qingmei, LI Xinhao, LYU Yongqin. Design and synthesis of molecularly imprinted polymers and their applications in medical diagnosis and biocatalysis [J]. Chinese Journal of Chromatography, 2026, 44(2): 134-150. |
| [2] | ZHANG Xuan, LIU Shucheng, PAN Jianming. Research progress on the application of molecularly imprinted nanozymes in the field of biosensing [J]. Chinese Journal of Chromatography, 2026, 44(2): 169-179. |
| [3] | ZHU Ran, CAI Ganping, ZHENG Haijiao, JIA Qiong. Research progress of molecular imprinting technology in the field of disease diagnosis and therapy [J]. Chinese Journal of Chromatography, 2026, 44(1): 2-16. |
| [4] | YE Weimin, HE Dongcheng, CUI Xinjiang, MA Haowen, QIAN Bo, SHI Feng. Research progress in the application of molecular imprinting technology in catalysis [J]. Chinese Journal of Chromatography, 2026, 44(1): 53-77. |
| [5] | WU Jiangyi, HUANG Xiaojia. Progress in electric field assisted molecular imprinting technology [J]. Chinese Journal of Chromatography, 2026, 44(1): 43-52. |
| [6] | YUAN Xueting, WANG Liang, CHEN Luxi, HU Lianghai. Molecular imprinting strategies and advances targeting biomembranes [J]. Chinese Journal of Chromatography, 2026, 44(1): 30-42. |
| [7] | ZHANG Junjie, SONG Yafei, LIU Yan, TIAN Xuemeng, GAO Ruixia. Fabrication of high-degradation-efficiency molecularly imprinted photocatalysts and its selective degradation performance [J]. Chinese Journal of Chromatography, 2026, 44(1): 78-91. |
| [8] | HUANG Jingying, YAN Jingyi, Ji QI, CHEN Lingxin, LI Jinhua. Applications of metal/covalent-organic framework compositing molecularly imprinted materials-based solid-phase extraction combined with chromatography and mass spectrometry for screening and recognition of new pollutants in coastal zone [J]. Chinese Journal of Chromatography, 2025, 43(8): 841-856. |
| [9] | DENG Huidan, JI Xiaofeng, XIAO Yingping, XIA Qiang, YANG Hua. Simultaneous determination of 50 veterinary drug residues in fish, shrimp, and crabs using a composite purification column-ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(7): 767-778. |
| [10] | LUO Yana, CHEN Jia, HU Yuyu, GAO Shijie, WANG Yanli, LIU Yanming, FENG Juanjuan, SUN Min. Research progress in material preparation and application of magnetism-enhanced in-tube solid-phase microextraction [J]. Chinese Journal of Chromatography, 2025, 43(6): 606-619. |
| [11] | CHENG Xianhui, YU Wenjing, WANG Dongxue, JIANG Liyan, HU Lianghai. Enriching plasma exosomes for proteomic analysis using a phosphatidylserine-imprinted polymer [J]. Chinese Journal of Chromatography, 2025, 43(5): 539-546. |
| [12] | CHENG Yingchao, GAO Yiyang, LI Xiaomin, CHEN Luyu, DU Fang, GUO Jie, MENG Yitong, SUN Min, FENG Juanjuan. Research advance of solid-phase microextraction based on covalent organic framework materials [J]. Chinese Journal of Chromatography, 2025, 43(2): 120-130. |
| [13] | LI Jiaxin, ZHAO Lizhu, SUN Xiangming, HE Zhiqiang, CAO Huiling, LUO Yingjin, YANG Bo. Research progress on ionic liquid-functionalized magnetic Fe3O4 nanomaterials in sample pretreatment- chromatographic analysis [J]. Chinese Journal of Chromatography, 2025, 43(12): 1300-1313. |
| [14] | SONG Xinli, ZHU Shuqi, WU Yuxin, ZHONG Liyan, LIU Yuqing. Determination of trace polychlorinated biphenyls in environmental water samples by solid-phase microextraction-gas chromatography-tandem mass spectrometry using carbon nanotube composite microspheres materials [J]. Chinese Journal of Chromatography, 2025, 43(10): 1154-1161. |
| [15] | LIU Jun, WU Jiangyi, LI Jintao, CHEN Nengwang, HUANG Xiaojia. Design and practice of undergraduate instrumental analysis experiment: analysis of polycyclic aromatic hydrocarbons in environmental water by solid-phase microextraction- liquid chromatography [J]. Chinese Journal of Chromatography, 2025, 43(10): 1177-1183. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||