Chinese Journal of Chromatography ›› 2024, Vol. 42 ›› Issue (6): 590-598.DOI: 10.3724/SP.J.1123.2023.11023
• Articles • Previous Articles
WANG Anping, CHEN Chushi, YANG Jinlan*(
), YANG Li*(
)
Received:2023-11-28
Online:2024-06-08
Published:2024-06-07
Supported by:CLC Number:
WANG Anping, CHEN Chushi, YANG Jinlan, YANG Li. Highly sensitive detection of fluorescent whitening agents in flour using sheathless capillary electrophoresis-electrospray ionization-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2024, 42(6): 590-598.
Fig. 1 Effect of extraction conditions on the recoveries of the fluorescent whitening agents (FWAs) (n=3) a. compositions of the extraction solvents; b. volume of the extraction solvent (CHCl3-MeOH, 3∶2, v/v); c. extraction time; d. extraction temperature.
| FWA | Molecular formula | Chemical structure | [M+H]+ | DP/V | ColE/eV |
|---|---|---|---|---|---|
| FWA52 | C14H17NO2 | ![]() | 232.1650 | 30 | 40 |
| FWA135 | C18H14N2O2 | ![]() | 291.1510 | 30 | 40 |
| FWA184 | C26H26N2O2S | ![]() | 431.2328 | 40 | 40 |
| FWA185 | C18H10N2O2S | ![]() | 319.0953 | 40 | 45 |
| FWA367 | C24H14N2O2 | ![]() | 363.1595 | 50 | 40 |
| FWA393 | C28H18N2O2 | ![]() | 415.2624 | 50 | 45 |
Table 1 Structure information and ESI-MS/MS parameters of the six target FWAs
| FWA | Molecular formula | Chemical structure | [M+H]+ | DP/V | ColE/eV |
|---|---|---|---|---|---|
| FWA52 | C14H17NO2 | ![]() | 232.1650 | 30 | 40 |
| FWA135 | C18H14N2O2 | ![]() | 291.1510 | 30 | 40 |
| FWA184 | C26H26N2O2S | ![]() | 431.2328 | 40 | 40 |
| FWA185 | C18H10N2O2S | ![]() | 319.0953 | 40 | 45 |
| FWA367 | C24H14N2O2 | ![]() | 363.1595 | 50 | 40 |
| FWA393 | C28H18N2O2 | ![]() | 415.2624 | 50 | 45 |
Fig. 2 Extracted ion electropherograms of the six FWAs by sheathless CE-ESI-MS/MS Standard solution of each FWA: 100 mg/L. Injection: 34.5 kPa for 10 s; separation voltage:+25 kV; separation auxiliary pressure: 34.5 kPa. The inset figures are the mass spectra of FWAs. a. qualitative ion in MRM mode; b. quantitative ion in MRM mode.
Fig. 3 Extracted ion electropherograms of the six FWAs under different CE conditions a. pH of buffer solution; b. ACN volume fraction in buffer solution. The concentration of FWA393 is 200 mg/L, and 100 mg/L for other five FWAs. 1. FWA52; 2. FWA135; 3. FWA184; 4. FWA185; 5. FWA367; 6. FWA393.
| Compound | Linear range/ (ng/g) | Regression equation | R2 | mLOD/ (ng/g) | mLOQ/ (ng/g) | iLOD/ (ng/g) | iLOQ/ (ng/g) | ME | Repeatabilities (RSDs/%) | |
|---|---|---|---|---|---|---|---|---|---|---|
| T | A | |||||||||
| FWA52 | 0.2-25 | y=23.37x+93.29 | 0.989 | 0.07 | 0.20 | 0.55 | 1.75 | 1.04 | 7.3 | 9.7 |
| FWA135 | 0.5-25 | y=20.26x+22.35 | 0.990 | 0.16 | 0.50 | 1.20 | 3.50 | 0.80 | 8.1 | 8.7 |
| FWA184 | 0.3-25 | y=154.49x+38.71 | 0.993 | 0.04 | 0.28 | 0.35 | 1.00 | 0.90 | 6.9 | 9.0 |
| FWA185 | 0.5-50 | y=23.38x+51.05 | 0.994 | 0.17 | 0.50 | 1.20 | 3.45 | 1.15 | 7.4 | 10.3 |
| FWA367 | 0.5-50 | y=10.63x+2.85 | 0.991 | 0.17 | 0.50 | 1.00 | 3.20 | 0.87 | 9.1 | 10.2 |
| FWA393 | 2.2-100 | y=59.83x+66.82 | 0.996 | 0.67 | 2.20 | 2.20 | 6.50 | 1.02 | 6.9 | 10.7 |
Table 2 Linear ranges, regression equations, correlation coefficients (R2), mLODs, mLOQs, iLODs, iLOQs, matrix effects (MEs) and repeatabilities
| Compound | Linear range/ (ng/g) | Regression equation | R2 | mLOD/ (ng/g) | mLOQ/ (ng/g) | iLOD/ (ng/g) | iLOQ/ (ng/g) | ME | Repeatabilities (RSDs/%) | |
|---|---|---|---|---|---|---|---|---|---|---|
| T | A | |||||||||
| FWA52 | 0.2-25 | y=23.37x+93.29 | 0.989 | 0.07 | 0.20 | 0.55 | 1.75 | 1.04 | 7.3 | 9.7 |
| FWA135 | 0.5-25 | y=20.26x+22.35 | 0.990 | 0.16 | 0.50 | 1.20 | 3.50 | 0.80 | 8.1 | 8.7 |
| FWA184 | 0.3-25 | y=154.49x+38.71 | 0.993 | 0.04 | 0.28 | 0.35 | 1.00 | 0.90 | 6.9 | 9.0 |
| FWA185 | 0.5-50 | y=23.38x+51.05 | 0.994 | 0.17 | 0.50 | 1.20 | 3.45 | 1.15 | 7.4 | 10.3 |
| FWA367 | 0.5-50 | y=10.63x+2.85 | 0.991 | 0.17 | 0.50 | 1.00 | 3.20 | 0.87 | 9.1 | 10.2 |
| FWA393 | 2.2-100 | y=59.83x+66.82 | 0.996 | 0.67 | 2.20 | 2.20 | 6.50 | 1.02 | 6.9 | 10.7 |
| Compound | Added/(ng/g) | Recoveries (RSDs)/%(n=5) | Repeatabilities (RSDs)/%(n=5) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1×mLOQ | 2×mLOQ | 10×mLOQ | 1×mLOQ | 2×mLOQ | 10×mLOQ | Intraday | Interday | |||
| FWA52 | 2.0 | 4.0 | 20.0 | 102.2 (7.4) | 92.4 (9.2) | 89.2 (8.7) | 8.9 | 9.1 | ||
| FWA135 | 4.5 | 9.0 | 45.0 | 90.4 (7.9) | 89.5 (9.2) | 101.4 (9.6) | 10.2 | 11.5 | ||
| FWA184 | 1.5 | 3.0 | 15.0 | 100.2 (6.9) | 86.2 (7.2) | 91.2 (9.0) | 7.9 | 9.4 | ||
| FWA185 | 5.0 | 10.0 | 50.0 | 95.3 (7.4) | 101.9 (9.5) | 92.6 (6.3) | 8.6 | 10.2 | ||
| FWA367 | 5.0 | 10.0 | 50.0 | 87.4 (6.5) | 88.2 (8.7) | 92.7 (7.8) | 9.6 | 11.3 | ||
| FWA393 | 15.0 | 30.0 | 150.0 | 103.7 (9.8) | 88.6 (9.4) | 87.5 (10.2) | 7.8 | 10.7 | ||
Table 3 Mean recoveries and repeatabilities of the proposed method at three spiked levels
| Compound | Added/(ng/g) | Recoveries (RSDs)/%(n=5) | Repeatabilities (RSDs)/%(n=5) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1×mLOQ | 2×mLOQ | 10×mLOQ | 1×mLOQ | 2×mLOQ | 10×mLOQ | Intraday | Interday | |||
| FWA52 | 2.0 | 4.0 | 20.0 | 102.2 (7.4) | 92.4 (9.2) | 89.2 (8.7) | 8.9 | 9.1 | ||
| FWA135 | 4.5 | 9.0 | 45.0 | 90.4 (7.9) | 89.5 (9.2) | 101.4 (9.6) | 10.2 | 11.5 | ||
| FWA184 | 1.5 | 3.0 | 15.0 | 100.2 (6.9) | 86.2 (7.2) | 91.2 (9.0) | 7.9 | 9.4 | ||
| FWA185 | 5.0 | 10.0 | 50.0 | 95.3 (7.4) | 101.9 (9.5) | 92.6 (6.3) | 8.6 | 10.2 | ||
| FWA367 | 5.0 | 10.0 | 50.0 | 87.4 (6.5) | 88.2 (8.7) | 92.7 (7.8) | 9.6 | 11.3 | ||
| FWA393 | 15.0 | 30.0 | 150.0 | 103.7 (9.8) | 88.6 (9.4) | 87.5 (10.2) | 7.8 | 10.7 | ||
Fig. 4 Extracted ion electropherograms of four positive flour samples using sheathless CE-ESI-MS/MS The conditions for sheathless CE-ESI-MS/MS are the same as in Fig. 2.
| Injection volume/ μL | Analysis method | Pre- treat- ment | Target | LOD/ (μg/L) | Linear range/ (μg/L) | Ref. |
|---|---|---|---|---|---|---|
| 5.0 | UPLC- | UAE | FWA52 | 0.2a | 0.2-20.0 | [ |
| MS/MS | FWA135 | 0.2a | 0.2-20.0 | |||
| FWA185 | 0.5a | 0.5-50.0 | ||||
| FWA393 | 2.0a | 2.0-200 | ||||
| FWA367 | 0.5a | 0.5-50.0 | ||||
| FWA368 | 2.0a | 2.0-200 | ||||
| FWA184 | 0.2a | 0.2-20.0 | ||||
| 10 | HPLC- | LPE | FWA135 | 1.10 | 1.0-64.0 | [ |
| MS/MS | FWA140 | 0.50 | 2.0-64.0 | |||
| FWA162 | 1.75 | 0.2-64.0 | ||||
| FWA184 | 1.35 | 0.1-32.0 | ||||
| FWA185 | 0.70 | 0.2-64.0 | ||||
| FWA367 | 1.05 | 1.0-64.0 | ||||
| FWA393 | 2.65 | 1.0-64.0 | ||||
| 10 | HPTLC- | UAE | FWA184 | 18 | 100-2000 | [ |
| MS | FWA367 | 21 | 100-2000 | |||
| Solid | MM-IR | - | FWA393 | 10 | - | [ |
| 0.001 | sheathless | UAE | FWA52 | 0.07 | 0.2-25 | this |
| CE-ESI- | FWA135 | 0.16 | 0.5-25 | work | ||
| MS/MS | FWA184 | 0.04 | 0.3-25 | |||
| FWA185 | 0.17 | 0.5-50 | ||||
| FWA367 | 0.17 | 0.5-50 | ||||
| FWA393 | 0.67 | 2.2-100 |
Table 4 Comparison of this method with other methods for the detection of FWAs in flour
| Injection volume/ μL | Analysis method | Pre- treat- ment | Target | LOD/ (μg/L) | Linear range/ (μg/L) | Ref. |
|---|---|---|---|---|---|---|
| 5.0 | UPLC- | UAE | FWA52 | 0.2a | 0.2-20.0 | [ |
| MS/MS | FWA135 | 0.2a | 0.2-20.0 | |||
| FWA185 | 0.5a | 0.5-50.0 | ||||
| FWA393 | 2.0a | 2.0-200 | ||||
| FWA367 | 0.5a | 0.5-50.0 | ||||
| FWA368 | 2.0a | 2.0-200 | ||||
| FWA184 | 0.2a | 0.2-20.0 | ||||
| 10 | HPLC- | LPE | FWA135 | 1.10 | 1.0-64.0 | [ |
| MS/MS | FWA140 | 0.50 | 2.0-64.0 | |||
| FWA162 | 1.75 | 0.2-64.0 | ||||
| FWA184 | 1.35 | 0.1-32.0 | ||||
| FWA185 | 0.70 | 0.2-64.0 | ||||
| FWA367 | 1.05 | 1.0-64.0 | ||||
| FWA393 | 2.65 | 1.0-64.0 | ||||
| 10 | HPTLC- | UAE | FWA184 | 18 | 100-2000 | [ |
| MS | FWA367 | 21 | 100-2000 | |||
| Solid | MM-IR | - | FWA393 | 10 | - | [ |
| 0.001 | sheathless | UAE | FWA52 | 0.07 | 0.2-25 | this |
| CE-ESI- | FWA135 | 0.16 | 0.5-25 | work | ||
| MS/MS | FWA184 | 0.04 | 0.3-25 | |||
| FWA185 | 0.17 | 0.5-50 | ||||
| FWA367 | 0.17 | 0.5-50 | ||||
| FWA393 | 0.67 | 2.2-100 |
|
| [1] | SHAO Yuchen, WEN Yalun, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2023 [J]. Chinese Journal of Chromatography, 2024, 42(5): 401-409. |
| [2] | LI Xiaoqian, XIA Zhining. Deep eutectic solvents synergistic with carboxymethyl -β-cyclodextrin on the improvement of chiral separation of metoprolol by capillary electrophoresis [J]. Chinese Journal of Chromatography, 2024, 42(4): 327-332. |
| [3] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
| [4] | MA Yao, HU Yangyang, ZHENG Liting, CHEN Li, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2021 [J]. Chinese Journal of Chromatography, 2022, 40(7): 591-599. |
| [5] | CHI Zhongmei, YANG Li. Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(6): 509-519. |
| [6] | ZHOU Jian, CHEN Xiaohong, JIN Micong. Adulteration identification of wheat flour in chestnut flour based on differences in mycotoxin contamination by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(4): 303-312. |
| [7] | LI Chao, WANG Qi, ZHANG Zhaoxiang. Field-amplified sample injection and graphene quantum dot dual preconcentration in the analysis of melamine and dicyandiamide by capillary electrophoresis [J]. Chinese Journal of Chromatography, 2022, 40(3): 289-295. |
| [8] | ZHANG Piwang, YANG Liye, LIU Qiang, LU Shangui, LIANG Ying, ZHANG Min. Multimaterial 3D-printed contactless conductivity/laser-induced fluorescence dual-detection cell for capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(8): 921-926. |
| [9] | JIANG Haowen, LI Jian, TAN Zhiqiang, GUO Yingying, LIU Yanwei, HU Ligang, YIN Yongguang, CAI Yong, JIANG Guibin. Application of non-stationary phase separation hyphenated with inductively coupled plasma mass spectrometry in the analysis of trace metal-containing nanoparticles in the environment [J]. Chinese Journal of Chromatography, 2021, 39(8): 855-869. |
| [10] | HAN Shimiao, ZHAO Liping, YANG Ge, QU Feng. Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(7): 721-729. |
| [11] | WANG Xuxin, ZHOU Shukun, LI Xiaomin, ZHANG Qinghe. Determination of thiram in wheat flour and flour improvers by high performance liquid chromatography-diode array detection [J]. Chinese Journal of Chromatography, 2021, 39(6): 652-658. |
| [12] | WEI Bo, MA Yao, TIAN Wenzhe, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2020 [J]. Chinese Journal of Chromatography, 2021, 39(6): 559-566. |
| [13] | QIN Shaojie, BAI Yu, LIU Huwei. Methods and applications of single-cell proteomics analysis based on mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(2): 142-151. |
| [14] | WANG Yuanyu, ZHANG Ruihua, ZHANG Qiang, CAO Chengxi, FAN Liuyin, LIU Weiwen. Determination of two quaternary ammonium salts in disinfector by portable capillary electrophoresis device based on smartphone [J]. Chinese Journal of Chromatography, 2021, 39(11): 1151-1156. |
| [15] | BAI Yu, FAN Yufan, GE Guangbo, WANG Fangjun. Advances in chromatography in the study of drug-plasma protein interactions [J]. Chinese Journal of Chromatography, 2021, 39(10): 1077-1085. |
| Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||