色谱 ›› 2026, Vol. 44 ›› Issue (1): 78-91.DOI: 10.3724/SP.J.1123.2025.06001
张军杰1, 宋亚菲1, 刘艳1, 田雪蒙1,2,*(
), 高瑞霞1,*(
)
收稿日期:2025-06-02
出版日期:2026-01-08
发布日期:2026-01-14
通讯作者:
* E-mail:xuemengtian@xjtu.edu.cn(田雪蒙);E-mail:ruixiagao@xjtu.edu.cn(高瑞霞).
基金资助:
ZHANG Junjie1, SONG Yafei1, LIU Yan1, TIAN Xuemeng1,2,*(
), GAO Ruixia1,*(
)
Received:2025-06-02
Online:2026-01-08
Published:2026-01-14
Supported by:摘要:
分子印迹光催化剂(MIPC)兼具分子识别选择性和光催化降解性能,在复杂环境中痕量污染物的选择性及深度去除方面展现出广阔的应用前景。然而,传统印迹层覆盖于光催化剂表面可能引发光屏蔽效应,进而导致MIPC光降解效率降低。针对这一问题,本工作提出异质界面原位印迹策略,通过将印迹空穴直接构筑于光催化剂/复合材料的界面处,有效规避表面覆盖层的不利影响,并促进光生载流子迁移,进而实现高选择性识别与高效光降解去除性能的协同提升。以偶氮类染料酸性橙为模板分子,BiOBr-Cu/聚吡咯复合材料为异质结体系,通过表面印迹技术,构建具有高降解效率的分子印迹光催化剂。采用扫描电镜、X-射线衍射图、红外光谱、X射线光电子能谱、紫外可见漫反射光谱、光致发光光谱等表征手段证明该材料成功制备,并进一步探究其吸附性能、降解性能、选择性降解性能及机理。所制备的材料不仅具有优异的可见光响应能力、快速的光生电子空穴分离效率,还具有高降解效率(比其他材料高出2.04~5.79倍)、良好的吸附容量(40.9 μmol/g)、快速的吸附速率(44.8 mg/(g·min))、良好的重复利用性(5个循环后,仍然能够达到初次降解率的90.7%)和优异的选择性(印迹因子达2.96,选择性降解参数大于1.79)。本工作为高降解效率分子印迹光催化材料的设计提供了新思路。
中图分类号:
张军杰, 宋亚菲, 刘艳, 田雪蒙, 高瑞霞. 高降解效率分子印迹光催化剂的制备及其选择性降解性能[J]. 色谱, 2026, 44(1): 78-91.
ZHANG Junjie, SONG Yafei, LIU Yan, TIAN Xuemeng, GAO Ruixia. Fabrication of high-degradation-efficiency molecularly imprinted photocatalysts and its selective degradation performance[J]. Chinese Journal of Chromatography, 2026, 44(1): 78-91.
图 1 BiOBr-Cu/ppyr-MIPs的合成路线图
Fig. 1 Synthesis process of BiOBr-Cu/ppyr-MIPsPVP: polyvinylpyrrolidone; EG: ethylene glycol; AO: acid orange; pyr: pyrrole; TRIM: trimethylolpropane trimethacrylate; pro-ppyr-MIPs: polypyrrole surface molecularly imprinted photocatalysts without elution.
图2 (a)功能单体pyr的用量对材料光降解性能的影响及(b)BiOBr-Cu/ppyr-MIPs动力学常数(n=3)
Fig. 2 (a) Effect of the amount of functional monomer pyr on the photocatalytic performance of the materials and (b) kinetic constants of BiOBr-Cu/ppyr-MIPs (n=3)
图3 (a)聚合时间对光降解性能影响及(b)BiOBr-Cu/ppyr-MIPs动力学常数(n=3)
Fig. 3 (a) Effect of the polymerization time on the photocatalytic performance of the materials and (b) kinetic constants of BiOBr-Cu/ppyr-MIPs (n=3)
图6 BiOBr-Cu和BiOBr-Cu/ppyr-MIPs的(a)Bi 4f、(b)Br 3d、(c)C 1s和(d)O 1s高分辨XPS谱图
Fig. 6 XPS spectra of BiOBr-Cu and BiOBr-Cu/ppyr-MIPs: high-resolution scan of (a) Bi 4f, (b) Br 3d, (c) C 1s, and (d) O 1s
图7 BiOBr-Cu和BiOBr-Cu/ppyr-MIPs的(a)UV-vis DRS图和(b)PL图
Fig. 7 (a) UV-vis DRS and (b) PL spectra of BiOBr-Cu and BiOBr-Cu/ppyr-MIPsDRS: diffuse reflectance spectroscopy; PL: photoluminescence.
图8 BiOBr-Cu/ppyr-MIPs和BiOBr-Cu/ppyr-NIPs的(a)动力学吸附图、(b)拟二级动力学拟合曲线、(c)等温吸附图以及(d)热力学Freundlich拟合曲线(n=3)
Fig. 8 (a) Adsorption kinetic, (b) pesudo-second-order kinetic models, (c) thermodynamics curves, and (d) Freundlich thermodynamics models of BiOBr-Cu/ppyr-MIPs and BiOBr-Cu/ppyr-NIPs (n=3) Qe: adsorption capacity at adsorption equilibrium; Ce: equilibrium concentration.
图9 (a)BiOBr-Cu/ppyr-MIPs用量对光降解性能的影响及(b)一级动力学拟合;(c)AO初始质量浓度对光降解性能的影响及(d)一级动力学拟合(n=3)
Fig. 9 (a) Effect of the amount of BiOBr-Cu/ppyr-MIPs on the photocatalytic performance and (b) first-order kinetics; (c) effect of the original AO mass concentration on the photocatalytic performance of BiOBr-Cu/ppyr-MIPs and (d) first-order kinetics (n=3)
图10 (a)初始pH对光降解性能的影响及(b)一级动力学拟合(n=3)
Fig. 10 (a) Effect of the initial pH on the photocatalytic performance of BiOBr-Cu/ppyr-MIPs and (b) first-order kinetics (n=3)
| Materials | Dosage/ mg | Original AO mass concentration/(μg/mL) | Degradation rate/% | Degradation time/min | TOF/ (10-5 min-1) | Ref. |
|---|---|---|---|---|---|---|
| Ag-Ag3O4/Bi4V2O11 | 100 | 10.0 | 99.5 | 180 | 5.53 | [ |
| Bi/Bi4NbO8Cl | 40.0 | 20.0 | 99.9 | 180 | 11.1 | [ |
| Ppy/Bi2MoO6 | 50.0 | 50.0 | 94.3 | 480 | 15.7 | [ |
| BiOBr-Cu/ppyr-NIPs | 15.0 | 20.0 | 41.4 | 120 | 13.8 | this work |
| BiOBr-Cu/ppyr-MIPs | 15.0 | 20.0 | 96.0 | 120 | 32.0 | this work |
表1 不同铋基光催化复合材料对AO光降解效率的比较
Table 1 Comparison of AO photo-degradation efficiencies with various Bi-based photocatalysts
| Materials | Dosage/ mg | Original AO mass concentration/(μg/mL) | Degradation rate/% | Degradation time/min | TOF/ (10-5 min-1) | Ref. |
|---|---|---|---|---|---|---|
| Ag-Ag3O4/Bi4V2O11 | 100 | 10.0 | 99.5 | 180 | 5.53 | [ |
| Bi/Bi4NbO8Cl | 40.0 | 20.0 | 99.9 | 180 | 11.1 | [ |
| Ppy/Bi2MoO6 | 50.0 | 50.0 | 94.3 | 480 | 15.7 | [ |
| BiOBr-Cu/ppyr-NIPs | 15.0 | 20.0 | 41.4 | 120 | 13.8 | this work |
| BiOBr-Cu/ppyr-MIPs | 15.0 | 20.0 | 96.0 | 120 | 32.0 | this work |
图12 BiOBr-Cu/ppyr-MIPs和BiOBr-Cu/ppyr-NIPs的选择性实验(n=3)
Fig. 12 Selectivity experiments of BiOBr-Cu/ppyr-MIPs and BiOBr-Cu/ppyr-NIPs (n=3) AR: allura red; RA: red amaranth; OG: orange G.
| Analyte | ηMIPs/% | ηNIPs/% | kimprinted | kcomparsion | kselectivity |
|---|---|---|---|---|---|
| AR | 45.5 | 35.0 | 2.11 | 1.18 | 1.79 |
| RA | 24.8 | 21.6 | 3.87 | 1.92 | 2.02 |
| OG | 21.8 | 23.6 | 4.40 | 1.75 | 2.51 |
表2 BiOBr-Cu/ppyr-MIPs和BiOBr-Cu/ppyr-NIPs的降解率和选择性系数
Table 2 Degradation rates and selectivity factors of AO and its competitors based on BiOBr-Cu/ppyr-MIPs and BiOBr-Cu/ppyr-NIPs
| Analyte | ηMIPs/% | ηNIPs/% | kimprinted | kcomparsion | kselectivity |
|---|---|---|---|---|---|
| AR | 45.5 | 35.0 | 2.11 | 1.18 | 1.79 |
| RA | 24.8 | 21.6 | 3.87 | 1.92 | 2.02 |
| OG | 21.8 | 23.6 | 4.40 | 1.75 | 2.51 |
图13 不同捕获剂对BiOBr-Cu/ppyr-MIPs光降解性能的影响(n=3)
Fig. 13 Effects of different scavengers on the photocatalytic performance of BiOBr-Cu/ppyr-MIPs (n=3)IPA: isopropanol; TEOA: triethanolamine; LAA: L-ascorbic acid sodium.
图14 (a)BiOBr-Cu/ppyr-MIPs电荷传输机理图,(b)初始(0 min)和60 min时光降解的质谱图, (c)BiOBr-Cu/ppyr-MIPs光降解AO的可能途径
Fig. 14 (a) Electron transmission over BiOBr-Cu/ppyr-MIPs; (b) mass spectra of the photodegradation at initial (0 min) and 60 min; (c) possible pathway of AO photodegradation with BiOBr-Cu/ppyr-MIPsh+: hole; e-: electron; VB: valence band; CB: conduction band; HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; PPYR: poly-pyrrole layer. The band positions in Fig. 14a are referenced to the standard hydrogen electrode.
|
| [1] | 杨书凌, 曹玉, 何坤霖, 封顺, 张纯姑, 单连海. 铜介导的磁性表面分子印迹聚合物用于棉仁中棉酚的高效特异性分离[J]. 色谱, 2026, 44(1): 101-113. |
| [2] | 吴江毅, 黄晓佳. 电场辅助分子印迹技术进展[J]. 色谱, 2026, 44(1): 43-52. |
| [3] | 程云, 林宇乐, 田苗苗. 高容量双酚A分子印迹聚合物的可控合成及其在环境水样检测中的应用[J]. 色谱, 2026, 44(1): 92-100. |
| [4] | 袁雪婷, 王亮, 陈鲁茜, 胡良海. 靶向生物膜的分子印迹策略与进展[J]. 色谱, 2026, 44(1): 30-42. |
| [5] | 叶为民, 何东城, 崔新江, 马好文, 钱波, 石峰. 分子印迹技术在催化领域应用研究进展[J]. 色谱, 2026, 44(1): 53-77. |
| [6] | 祝冉, 蔡甘萍, 郑海娇, 贾琼. 分子印迹技术在疾病诊断和治疗领域的研究进展[J]. 色谱, 2026, 44(1): 2-16. |
| [7] | 黄晶滢, 闫敬怡, 齐骥, 陈令新, 李金花. 基于金属/共价有机框架分子印迹材料的固相萃取结合色谱/质谱在海岸带新污染物筛查识别中的应用[J]. 色谱, 2025, 43(8): 841-856. |
| [8] | 程显惠, 于文静, 王冬雪, 姜丽艳, 胡良海. 磷脂酰丝氨酸分子印迹聚合物对血浆外泌体的富集与蛋白质组学分析[J]. 色谱, 2025, 43(5): 539-546. |
| [9] | 谢宝轩, 吕洋, 刘震. 用于复杂生物样品体系分离与识别的分子印迹技术最新进展[J]. 色谱, 2024, 42(6): 508-523. |
| [10] | 方敏, 吴雅萍, 张文敏, 张兰, 杨振泉. 新型功能材料在藻毒素萃取中的应用进展[J]. 色谱, 2024, 42(3): 225-233. |
| [11] | 商健, 马林智, 雷超, 苏新科, 刘宇, 王悦, 高瑞霞. 类红细胞状表面分子印迹聚合物的制备及其用于牛奶中四环素的选择性富集[J]. 色谱, 2024, 42(12): 1117-1125. |
| [12] | 刘威, 贾冬雪, 连文慧, 赵雨. 金属有机框架分子印迹材料的应用进展[J]. 色谱, 2023, 41(8): 651-661. |
| [13] | 谢阳, 张翼, 石海珠, 吴兆菊, 余雪弘, 张纯姑, 封顺. 共价有机框架分子印迹聚合物复合材料的制备及其用于牛奶中痕量诺氟沙星的选择性富集[J]. 色谱, 2022, 40(1): 1-9. |
| [14] | 李婷, 常蒙蒙, 石先哲, 许国旺. 分子印迹聚合物在极性农药残留检测中的应用进展[J]. 色谱, 2021, 39(9): 930-940. |
| [15] | 刘洪媛, 金静, 郭崔崔, 陈吉平, 胡春. 环境样品中双酚类化合物的固相萃取研究进展[J]. 色谱, 2021, 39(8): 835-844. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||