Chinese Journal of Chromatography ›› 2021, Vol. 39 ›› Issue (2): 118-124.DOI: 10.3724/SP.J.1123.2020.11014
• Mini-reviews • Previous Articles Next Articles
ZHOU Wen1,2, YANG Kaiguang1,*(), ZHAO Baofeng1, ZHANG Lihua1, ZHANG Yukui1
Received:
2020-11-18
Online:
2021-02-08
Published:
2021-01-14
Contact:
YANG Kaiguang
Supported by:
Element | ROS-responsive linker | ROS-responsive mechanism |
---|---|---|
Chalcogen | thioether | ![]() |
thioketal | ![]() | |
selenide | ![]() | |
diselenide | ![]() | |
telluride | ![]() | |
Others | arylboronic ester | ![]() |
ferrocene | ![]() | |
peroxalate ester | ![]() |
Table 1 Mechanism of ROS-responsive linkers
Element | ROS-responsive linker | ROS-responsive mechanism |
---|---|---|
Chalcogen | thioether | ![]() |
thioketal | ![]() | |
selenide | ![]() | |
diselenide | ![]() | |
telluride | ![]() | |
Others | arylboronic ester | ![]() |
ferrocene | ![]() | |
peroxalate ester | ![]() |
ROS- responsive linker | Responsive mechanism | Nanocarriers | Diameter/ nm | Drug | ROS-responsive release (in vitro) | Cell type | Reference |
---|---|---|---|---|---|---|---|
Thioether | hydrophobic/ hydrophilic conversion | MSNs-PhS (1∶20) | 319 | Rhodamine 6G/ doxorubicin | +++ | MCF-7 | [ |
Thioketal | cleavage | RGD-PEG-TK-PLGA | 115 | doxorubicin/α-TOS | ++++ | Cal27 | [ |
PPID | 198 | IR780/doxorubicin | +++ | Hep1-6 | [ | ||
DT-PNs | 55 | camptothecin | ++ | 4T1 | [ | ||
Selenide | hydrophobic/ hydrophilic conversion | PEG-PUSe-PEG | 71 | doxorubicin | ++ | / | [ |
selenoxide elimination reactions | C6-C3SePEG2000 | 84 | / | / | / | [ | |
Diselenide | cleavage | PEG-PUSeSe-PEG | 76 | Rhodamine B | ++++ | / | [ |
VPSeP | 153 | berberine | ++ | HFLS-RA | [ | ||
MSN2 | 50 | Ribonuclease A | ++++ | HeLa | [ | ||
Telluride | hydrophobic/ hydrophilic conversion | PEG-PUTe-PEG | 35 | / | / | / | [ |
Arylboronic | cleavage | Oxi-DEX | 100 | ovalbumin | / | DC 2.4 | [ |
ester | Polymer 2 | 136 | Nile Red/fluorescein diacetate | +++ | Neutrophils | [ | |
Gd-N8 | 490 | paclitaxel/doxorubicin hydrochloride | ++++ | Hela | [ | ||
Ferrocene | hydrophobic/ hydrophilic conversion | FNP (C2) | 190 | Nile red | + | / | [ |
Peroxalate ester | cleavage | PPO | 220.4±1.8 | ovalbumin | +++ | BMDC | [ |
Table 2 Comparison of ROS-stimuli responsive nanocarriers
ROS- responsive linker | Responsive mechanism | Nanocarriers | Diameter/ nm | Drug | ROS-responsive release (in vitro) | Cell type | Reference |
---|---|---|---|---|---|---|---|
Thioether | hydrophobic/ hydrophilic conversion | MSNs-PhS (1∶20) | 319 | Rhodamine 6G/ doxorubicin | +++ | MCF-7 | [ |
Thioketal | cleavage | RGD-PEG-TK-PLGA | 115 | doxorubicin/α-TOS | ++++ | Cal27 | [ |
PPID | 198 | IR780/doxorubicin | +++ | Hep1-6 | [ | ||
DT-PNs | 55 | camptothecin | ++ | 4T1 | [ | ||
Selenide | hydrophobic/ hydrophilic conversion | PEG-PUSe-PEG | 71 | doxorubicin | ++ | / | [ |
selenoxide elimination reactions | C6-C3SePEG2000 | 84 | / | / | / | [ | |
Diselenide | cleavage | PEG-PUSeSe-PEG | 76 | Rhodamine B | ++++ | / | [ |
VPSeP | 153 | berberine | ++ | HFLS-RA | [ | ||
MSN2 | 50 | Ribonuclease A | ++++ | HeLa | [ | ||
Telluride | hydrophobic/ hydrophilic conversion | PEG-PUTe-PEG | 35 | / | / | / | [ |
Arylboronic | cleavage | Oxi-DEX | 100 | ovalbumin | / | DC 2.4 | [ |
ester | Polymer 2 | 136 | Nile Red/fluorescein diacetate | +++ | Neutrophils | [ | |
Gd-N8 | 490 | paclitaxel/doxorubicin hydrochloride | ++++ | Hela | [ | ||
Ferrocene | hydrophobic/ hydrophilic conversion | FNP (C2) | 190 | Nile red | + | / | [ |
Peroxalate ester | cleavage | PPO | 220.4±1.8 | ovalbumin | +++ | BMDC | [ |
|
[1] | WU Lijuan, YANG Lili, HU Enyu, WANG Meifei, YANG Chao, YIN Mingming. Determination of 14 aniline and benzidine compounds in soil by gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1127-1134. |
[2] | MI Kun, ZHANG Wentian, WEN Luhong, WANG Jin. Rapid detection of four amphetamine-type drugs in hair by pulsed direct current electrospray mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1141-1148. |
[3] | YANG Zhanqiang, ZHANG Fangfang, HAN Chunxia, ZHENG Hongguo. Determination of boric acid and silicic acid in mineral water by nonsuppressed ion chromatography [J]. Chinese Journal of Chromatography, 2023, 41(12): 1121-1126. |
[4] | TONG Xin, JIN Yang, JIN Jing, LIU Ping, WU Chunyan, TONG Shengqiang. Off-line comprehensive two-dimensional countercurrent chromatography-liquid chromatography separation of Curcuma volatile oil [J]. Chinese Journal of Chromatography, 2023, 41(12): 1115-1120. |
[5] | DONG Jieqiong, XIAO Jin, ZHOU Xin, LI Ning, WANG Xuesong, KANG Junjie. Determination of 14 β-agonists in animal meat by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1106-1114. |
[6] | WANG Xianli, RAO Qinxiong, ZHANG Qicai, DU Penghui, SONG Weiguo. Determination of 14 perfluoroalkyl substances in Chinese mitten crab by multi-plug filtration cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1095-1105. |
[7] | ZHAO Qianru, LIU Hua, MENG Yaping, LI Xiang, GAO Ruifang, LI Xiangsheng. Simultaneous determination of 83 glucocorticoids in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1084-1094. |
[8] | ZHAO Yuan, LIU Xin, ZHANG Yidan, ZHANG Jian, LIU Xiang, YANG Guofeng. Tandem mass tag-based quantitative proteomics analysis of plasma and plasma exosomes in Parkinson’s disease [J]. Chinese Journal of Chromatography, 2023, 41(12): 1073-1083. |
[9] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[10] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[11] | GUO Dongmei, XIA Yiran, Mujeeb ur RAHMAN, WANG Jianzhong, LIU Jiawei, BAI Quan. Preparation of a block copolymer-based temperature-responsive affinity chromatography stationary phase for antibody separation and purification [J]. Chinese Journal of Chromatography, 2023, 41(12): 1045-1051. |
[12] | ZHANG Zhenyong. Chiral capillary gas chromatography for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane [J]. Chinese Journal of Chromatography, 2023, 41(12): 1135-1140. |
[13] | NING Xiao, JIN Shaoming, LI Zhiyuan, YANG Chongjun, MAO Da, CAO Jin. Liquid chromatography-high resolution mass spectrometry analysis of 300 illegally added drugs and their analogues in functional milk powder for the elderly [J]. Chinese Journal of Chromatography, 2023, 41(11): 960-975. |
[14] | TONG Lanyan, XU Bozhou, NIE Xuemei, WANG Xiujuan, MA Jiahui, GUO Wei, LI Genrong, GONG Yingkun, XU Xiuli. Determination of 22 mycotoxins in milk by liquid chromatography-quadrupole/orbitrap mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(11): 986-994. |
[15] | ZHANG Luxing, ZHOU Zheng, CAO Lin, QIAN Jiang. Determination of seven mycotoxins in cereals by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry based on the self-built database [J]. Chinese Journal of Chromatography, 2023, 41(11): 1002-1009. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||