Chinese Journal of Chromatography ›› 2022, Vol. 40 ›› Issue (3): 281-288.DOI: 10.3724/SP.J.1123.2021.10011
• Articles • Previous Articles Next Articles
SUN Yinlu1, WANG Lin1, YIN Zhiyu1, ZHAO Jianwei2,*()
Received:
2021-10-14
Online:
2022-03-08
Published:
2022-03-04
Contact:
ZHAO Jianwei
Supported by:
Fig. 2 Schematic of simulated trajectory and statistical analysis of retention time a. a typical simulated trajectory of a particle within a capillary column; b. a typical chromatographic peak with Gaussian fitting obtained from the statistical analysis of the diffusion time of the particles.
T/K | δ/(m/s) | ||||
---|---|---|---|---|---|
C8 | C9 | C10 | C11 | C12 | |
348 | 2.60 | 2.45 | 2.33 | 2.22 | 2.13 |
353 | 2.62 | 2.47 | 2.35 | 2.24 | 2.14 |
358 | 2.64 | 2.49 | 2.36 | 2.25 | 2.16 |
363 | 2.66 | 2.51 | 2.38 | 2.27 | 2.17 |
368 | 2.67 | 2.52 | 2.40 | 2.29 | 2.19 |
373 | 2.69 | 2.54 | 2.41 | 2.30 | 2.20 |
378 | 2.71 | 2.56 | 2.43 | 2.32 | 2.22 |
Table 1 Random velocities (δ) of n-alkanes at different temperatures
T/K | δ/(m/s) | ||||
---|---|---|---|---|---|
C8 | C9 | C10 | C11 | C12 | |
348 | 2.60 | 2.45 | 2.33 | 2.22 | 2.13 |
353 | 2.62 | 2.47 | 2.35 | 2.24 | 2.14 |
358 | 2.64 | 2.49 | 2.36 | 2.25 | 2.16 |
363 | 2.66 | 2.51 | 2.38 | 2.27 | 2.17 |
368 | 2.67 | 2.52 | 2.40 | 2.29 | 2.19 |
373 | 2.69 | 2.54 | 2.41 | 2.30 | 2.20 |
378 | 2.71 | 2.56 | 2.43 | 2.32 | 2.22 |
T/K | tM/min | uM/(m/s) | T/K | tM/min | uM/(m/s) |
---|---|---|---|---|---|
348 | 1.4038 | 0.3562 | 368 | 1.357 | 0.3685 |
353 | 1.3916 | 0.3593 | 373 | 1.3461 | 0.3714 |
358 | 1.3797 | 0.3624 | 378 | 1.3356 | 0.3744 |
363 | 1.3682 | 0.3655 |
Table 2 Driving velocities of the mobile phase (uM) at different temperatures
T/K | tM/min | uM/(m/s) | T/K | tM/min | uM/(m/s) |
---|---|---|---|---|---|
348 | 1.4038 | 0.3562 | 368 | 1.357 | 0.3685 |
353 | 1.3916 | 0.3593 | 373 | 1.3461 | 0.3714 |
358 | 1.3797 | 0.3624 | 378 | 1.3356 | 0.3744 |
363 | 1.3682 | 0.3655 |
T/K | tRexp/min | nads | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C8 | C9 | C10 | C11 | C12 | C8 | C9 | C10 | C11 | C12 | ||
348 | 2.36 | 3.36 | 5.41 | 9.59 | 18.14 | 24.29 | 52.64 | 113.41 | 243.11 | 519.06 | |
353 | 2.19 | 3.01 | 4.66 | 8.01 | 14.77 | 20.34 | 43.60 | 92.89 | 196.91 | 415.74 | |
358 | 2.07 | 2.72 | 4.00 | 6.49 | 11.35 | 17.55 | 36.27 | 74.53 | 152.39 | 310.34 | |
363 | 1.96 | 2.50 | 3.53 | 5.48 | 9.22 | 15.11 | 30.56 | 61.41 | 122.82 | 244.64 | |
368 | 1.87 | 2.31 | 3.13 | 4.67 | 7.52 | 13.09 | 25.84 | 50.68 | 98.92 | 192.29 | |
373 | 1.79 | 2.16 | 2.83 | 4.04 | 6.25 | 11.45 | 22.08 | 42.32 | 80.73 | 153.37 | |
378 | 1.73 | 2.03 | 2.58 | 3.54 | 5.24 | 10.07 | 18.94 | 35.44 | 65.96 | 122.26 |
Table 3 Measured retention times (tRexp) of n-alkanes at different temperatures and corresponding adsorption steps (nads) for simulation
T/K | tRexp/min | nads | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C8 | C9 | C10 | C11 | C12 | C8 | C9 | C10 | C11 | C12 | ||
348 | 2.36 | 3.36 | 5.41 | 9.59 | 18.14 | 24.29 | 52.64 | 113.41 | 243.11 | 519.06 | |
353 | 2.19 | 3.01 | 4.66 | 8.01 | 14.77 | 20.34 | 43.60 | 92.89 | 196.91 | 415.74 | |
358 | 2.07 | 2.72 | 4.00 | 6.49 | 11.35 | 17.55 | 36.27 | 74.53 | 152.39 | 310.34 | |
363 | 1.96 | 2.50 | 3.53 | 5.48 | 9.22 | 15.11 | 30.56 | 61.41 | 122.82 | 244.64 | |
368 | 1.87 | 2.31 | 3.13 | 4.67 | 7.52 | 13.09 | 25.84 | 50.68 | 98.92 | 192.29 | |
373 | 1.79 | 2.16 | 2.83 | 4.04 | 6.25 | 11.45 | 22.08 | 42.32 | 80.73 | 153.37 | |
378 | 1.73 | 2.03 | 2.58 | 3.54 | 5.24 | 10.07 | 18.94 | 35.44 | 65.96 | 122.26 |
Fig. 3 Adsorption step number (nads) as a function of column temperature (T) and number of carbon atoms (ncar) of molecule to be separated a. effect of column temperature on adsorption step number for different component; b. effect of number of carbon atom of molecule on the slope a of the fitting line in a; c. effect of number of carbon atom of molecule on adsorption step number at different column temperatures; d. effect of column temperature on the slope b of the fitting line in c.
T/K | Alkanol | Number of carbon atoms equivalent to n-alkanes | ln nads | nads |
---|---|---|---|---|
333 | C3,OH | 5.68 | 1.72 | 5.61 |
C4,OH | 6.68 | 2.57 | 13.10 | |
C5,OH | 7.68 | 3.42 | 30.60 | |
C6,OH | 8.68 | 4.27 | 71.46 | |
C7,OH | 9.68 | 5.12 | 166.92 | |
C8,OH | 10.68 | 5.97 | 389.86 | |
353 | C3,OH | 5.68 | 1.32 | 3.76 |
C4,OH | 6.68 | 2.06 | 7.87 | |
C5,OH | 7.68 | 2.80 | 16.48 | |
C6,OH | 8.68 | 3.54 | 34.52 | |
C7,OH | 9.68 | 4.28 | 72.31 | |
C8,OH | 10.68 | 5.02 | 151.46 |
Table 5 Adsorption step number of alkanols at different temperatures
T/K | Alkanol | Number of carbon atoms equivalent to n-alkanes | ln nads | nads |
---|---|---|---|---|
333 | C3,OH | 5.68 | 1.72 | 5.61 |
C4,OH | 6.68 | 2.57 | 13.10 | |
C5,OH | 7.68 | 3.42 | 30.60 | |
C6,OH | 8.68 | 4.27 | 71.46 | |
C7,OH | 9.68 | 5.12 | 166.92 | |
C8,OH | 10.68 | 5.97 | 389.86 | |
353 | C3,OH | 5.68 | 1.32 | 3.76 |
C4,OH | 6.68 | 2.06 | 7.87 | |
C5,OH | 7.68 | 2.80 | 16.48 | |
C6,OH | 8.68 | 3.54 | 34.52 | |
C7,OH | 9.68 | 4.28 | 72.31 | |
C8,OH | 10.68 | 5.02 | 151.46 |
T/K | Alkanol | tRsimu/min | tRexp/min | Re/% |
---|---|---|---|---|
333 | C3,OH | 1.75 | 1.70 | 2.88 |
C4,OH | 2.09 | 2.01 | 3.86 | |
C5,OH | 2.83 | 2.72 | 4.02 | |
C6,OH | 4.44 | 4.31 | 3.08 | |
C7,OH | 8.01 | 7.94 | 0.90 | |
C8,OH | 15.92 | 16.13 | 1.33 | |
353 | C3,OH | 1.60 | 1.57 | 1.65 |
C4,OH | 1.78 | 1.72 | 3.23 | |
C5,OH | 2.13 | 2.04 | 4.46 | |
C6,OH | 2.83 | 2.69 | 5.15 | |
C7,OH | 4.21 | 4.04 | 4.22 | |
C8,OH | 6.98 | 6.84 | 1.95 |
Table 6 Predicted and measured retention times of alkanols
T/K | Alkanol | tRsimu/min | tRexp/min | Re/% |
---|---|---|---|---|
333 | C3,OH | 1.75 | 1.70 | 2.88 |
C4,OH | 2.09 | 2.01 | 3.86 | |
C5,OH | 2.83 | 2.72 | 4.02 | |
C6,OH | 4.44 | 4.31 | 3.08 | |
C7,OH | 8.01 | 7.94 | 0.90 | |
C8,OH | 15.92 | 16.13 | 1.33 | |
353 | C3,OH | 1.60 | 1.57 | 1.65 |
C4,OH | 1.78 | 1.72 | 3.23 | |
C5,OH | 2.13 | 2.04 | 4.46 | |
C6,OH | 2.83 | 2.69 | 5.15 | |
C7,OH | 4.21 | 4.04 | 4.22 | |
C8,OH | 6.98 | 6.84 | 1.95 |
T/K | Alkanol | σsimu/min | σexp/min | Re/% |
---|---|---|---|---|
333 | C3,OH | 0.225 | 0.453 | -52.40 |
C4,OH | 0.234 | 0.475 | -50.77 | |
C5,OH | 0.449 | 0.630 | -28.72 | |
C6,OH | 0.996 | 1.004 | -0.75 | |
C7,OH | 2.196 | 2.067 | 6.24 | |
C8,OH | 5.491 | 4.706 | 16.67 | |
353 | C3,OH | 0.393 | 0.500 | -61.42 |
C4,OH | 0.204 | 0.509 | -59.97 | |
C5,OH | 0.263 | 0.593 | -55.60 | |
C6,OH | 0.516 | 0.781 | -33.94 | |
C7,OH | 0.977 | 1.276 | -23.40 | |
C8,OH | 1.718 | 2.294 | -25.13 |
Table 7 Predicted and measured peak widths (σ) of alkanols
T/K | Alkanol | σsimu/min | σexp/min | Re/% |
---|---|---|---|---|
333 | C3,OH | 0.225 | 0.453 | -52.40 |
C4,OH | 0.234 | 0.475 | -50.77 | |
C5,OH | 0.449 | 0.630 | -28.72 | |
C6,OH | 0.996 | 1.004 | -0.75 | |
C7,OH | 2.196 | 2.067 | 6.24 | |
C8,OH | 5.491 | 4.706 | 16.67 | |
353 | C3,OH | 0.393 | 0.500 | -61.42 |
C4,OH | 0.204 | 0.509 | -59.97 | |
C5,OH | 0.263 | 0.593 | -55.60 | |
C6,OH | 0.516 | 0.781 | -33.94 | |
C7,OH | 0.977 | 1.276 | -23.40 | |
C8,OH | 1.718 | 2.294 | -25.13 |
|
[1] | DU Jie, SUN Pengchao, ZHANG Menglu, LIAN Zete, YUAN Fenggang, WANG Gang. Preparation of porous boron nitride-doped polypyrrole-2,3,3-trimethylindole solid-phase microextraction coating for polycyclic aromatic hydrocarbon detection [J]. Chinese Journal of Chromatography, 2023, 41(9): 789-798. |
[2] | QU Jian, NI Yuwen, YU Haoran, TIAN Hongxu, WANG Longxing, CHEN Jiping. New pretreatment method for detecting petroleum hydrocarbons in soil: silica-gel dehydration and cyclohexane extraction [J]. Chinese Journal of Chromatography, 2023, 41(9): 814-820. |
[3] | HUANG Jianying, XIA Ling, XIAO Xiaohua, LI Gongke. Advances in microchip electrophoresis for the separation and analysis of biological samples [J]. Chinese Journal of Chromatography, 2023, 41(8): 641-650. |
[4] | LU Huiyuan, WANG Lijuan, ZHANG Jiongkai, ZHANG Chizhong, LI Tianjuan, JI Ruixue, SHEN Weijian. Determination of four fatty acid ethyl esters in olive oil by solid phase extraction-gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(4): 359-365. |
[5] | LIU Hualin, LI Yanan, ZI Min, CHEN Zheng, DUAN Aihong, YUAN Liming. Separation of chiral compounds using high performance liquid chromatography stationary phase based on covalent organic framework material TpPa-NH2-Glu [J]. Chinese Journal of Chromatography, 2023, 41(2): 187-194. |
[6] | GUO Dongmei, XIA Yiran, Mujeeb ur RAHMAN, WANG Jianzhong, LIU Jiawei, BAI Quan. Preparation of a block copolymer-based temperature-responsive affinity chromatography stationary phase for antibody separation and purification [J]. Chinese Journal of Chromatography, 2023, 41(12): 1045-1051. |
[7] | ZHANG Zhenyong. Chiral capillary gas chromatography for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane [J]. Chinese Journal of Chromatography, 2023, 41(12): 1135-1140. |
[8] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[9] | ZHENG Kangni, QIN Gaizhao, JIANG Xuefei, ZHANG Junhui, YUAN Liming. Preparation of porous organic cage and its use as chiral stationary phase for capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 929-936. |
[10] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[11] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
[12] | YANG Han, TANG Wenqi, ZENG Chu, MENG Shasha, XU Ming. Rational design of high performance metal organic framework stationary phase for gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 853-865. |
[13] | CHEN Jia, QIU Hongdeng. Recent advances in carbon dots-based chromatographic separation materials [J]. Chinese Journal of Chromatography, 2023, 41(10): 825-834. |
[14] | MAYIRA Abulitifu, ZHONG Zihao, BAI Xi. Progress in the application of preparative gas chromatography in separating volatile compounds [J]. Chinese Journal of Chromatography, 2023, 41(1): 37-46. |
[15] | XU Jiabi, CHENG Yue, LU Xinling, JIN Xiaoning, WANG Yong. Recent advances in the research of chromatographic separation materials based on click chemistry [J]. Chinese Journal of Chromatography, 2023, 41(1): 1-13. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||