Chinese Journal of Chromatography ›› 2022, Vol. 40 ›› Issue (8): 712-720.DOI: 10.3724/SP.J.1123.2022.04002
• Special Columnof Separation and Analysis for Food Safety-Functional Adsorbents • Previous Articles Next Articles
SHANG Weiwei, SUO Decheng, LI Tong, DU Qiuling, JIANG Xianhong, WANG Peilong()
Received:
2022-04-02
Online:
2022-08-08
Published:
2022-07-29
Contact:
WANG Peilong
Supported by:
CLC Number:
SHANG Weiwei, SUO Decheng, LI Tong, DU Qiuling, JIANG Xianhong, WANG Peilong. Metal-organic framework UiO-67-based enrichment and purification of progesterone residues in milk[J]. Chinese Journal of Chromatography, 2022, 40(8): 712-720.
Compound | Retention time/min | Precursor ion (m/z) | Product ions (m/z) |
---|---|---|---|
MLG | 4.61 | 355.23 | 279.18*/337.22 |
MG | 4.68 | 343.23 | 267.18*/325.22 |
17α-HPT | 4.99 | 331.21 | 97.07*/109.07 |
AT | 5.07 | 311.21 | 227.15*/269.16 |
LG | 5.23 | 313.22 | 109.20*/245.30 |
MP | 5.67 | 345.24 | 123.08*/97.07 |
PT | 5.75 | 315.24 | 97.07*/109.07 |
Table 1 Retention times and MS parameters of the target compounds
Compound | Retention time/min | Precursor ion (m/z) | Product ions (m/z) |
---|---|---|---|
MLG | 4.61 | 355.23 | 279.18*/337.22 |
MG | 4.68 | 343.23 | 267.18*/325.22 |
17α-HPT | 4.99 | 331.21 | 97.07*/109.07 |
AT | 5.07 | 311.21 | 227.15*/269.16 |
LG | 5.23 | 313.22 | 109.20*/245.30 |
MP | 5.67 | 345.24 | 123.08*/97.07 |
PT | 5.75 | 315.24 | 97.07*/109.07 |
Compound | Linear equation | R2 | LOD/ (μg/L) | LOQ/ (μg/L) |
---|---|---|---|---|
MLG | y=4.46×105 x+1.08×105 | 0.9992 | 0.30 | 1.0 |
MG | y=8.29×105 x+2.33×105 | 0.9981 | 0.06 | 0.19 |
17α-HPT | y=1.94×105 x-2.52×105 | 0.9993 | 0.25 | 0.84 |
AT | y=1.06×105 x+1.97×105 | 0.9972 | 0.30 | 1.0 |
LG | y=1.25×104 x+4.15×105 | 0.9964 | 0.17 | 0.58 |
MP | y=4.53×104 x-4.95×104 | 0.9964 | 0.27 | 0.90 |
PT | y=7.32×104 x+7.52×105 | 0.9998 | 0.25 | 0.84 |
Table 2 Linear equations, correlation coefficients (R2), LODs and LOQs of progesterones
Compound | Linear equation | R2 | LOD/ (μg/L) | LOQ/ (μg/L) |
---|---|---|---|---|
MLG | y=4.46×105 x+1.08×105 | 0.9992 | 0.30 | 1.0 |
MG | y=8.29×105 x+2.33×105 | 0.9981 | 0.06 | 0.19 |
17α-HPT | y=1.94×105 x-2.52×105 | 0.9993 | 0.25 | 0.84 |
AT | y=1.06×105 x+1.97×105 | 0.9972 | 0.30 | 1.0 |
LG | y=1.25×104 x+4.15×105 | 0.9964 | 0.17 | 0.58 |
MP | y=4.53×104 x-4.95×104 | 0.9964 | 0.27 | 0.90 |
PT | y=7.32×104 x+7.52×105 | 0.9998 | 0.25 | 0.84 |
Compound | 1 μg/L | 5 μg/L | ||||
---|---|---|---|---|---|---|
Recovery/% | RSD/% | Recovery/% | RSD/% | |||
MLG | 99.64 | 2.71 | 105.58 | 5.86 | ||
MG | 87.10 | 3.68 | 99.79 | 6.52 | ||
17α-HPT | 101.78 | 5.54 | 101.45 | 9.64 | ||
AT | 92.63 | 8.27 | 101.50 | 8.23 | ||
LG | 93.55 | 7.46 | 93.83 | 7.98 | ||
MP | 96.59 | 2.66 | 94.10 | 7.05 | ||
PT | 97.36 | 6.63 | 98.40 | 7.08 |
Table 3 Recoveries and precisions of progesterones in different spiked levels (n=3)
Compound | 1 μg/L | 5 μg/L | ||||
---|---|---|---|---|---|---|
Recovery/% | RSD/% | Recovery/% | RSD/% | |||
MLG | 99.64 | 2.71 | 105.58 | 5.86 | ||
MG | 87.10 | 3.68 | 99.79 | 6.52 | ||
17α-HPT | 101.78 | 5.54 | 101.45 | 9.64 | ||
AT | 92.63 | 8.27 | 101.50 | 8.23 | ||
LG | 93.55 | 7.46 | 93.83 | 7.98 | ||
MP | 96.59 | 2.66 | 94.10 | 7.05 | ||
PT | 97.36 | 6.63 | 98.40 | 7.08 |
Compound | This work | SN/T 1980-2007 | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 1 | Sample 2 | Sample 3 | Sample 4 | ||
MLG | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
MG | 1.46 | 1.05 | 1.08 | 0.98 | 1.13 | 0.98 | 0.89 | 0.92 | |
17α-HPT | 0.85 | 0.50 | 0.43 | 0.49 | 0.88 | 0.73 | 0.35 | 0.62 | |
AT | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
LG | 9.29 | 15.72 | 9.50 | 13.23 | 10.11 | 16.58 | 11.35 | 14.46 | |
MP | 0.78 | 0.97 | 0.89 | 0.73 | 0.74 | 0.86 | 0.64 | 0.63 | |
PT | 14.32 | 18.57 | 15.20 | 20.12 | 15.82 | 20.02 | 17.24 | 18.45 |
Table 4 Determination of progesterone contents in milk by this method and standard method μg/L
Compound | This work | SN/T 1980-2007 | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 1 | Sample 2 | Sample 3 | Sample 4 | ||
MLG | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
MG | 1.46 | 1.05 | 1.08 | 0.98 | 1.13 | 0.98 | 0.89 | 0.92 | |
17α-HPT | 0.85 | 0.50 | 0.43 | 0.49 | 0.88 | 0.73 | 0.35 | 0.62 | |
AT | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
LG | 9.29 | 15.72 | 9.50 | 13.23 | 10.11 | 16.58 | 11.35 | 14.46 | |
MP | 0.78 | 0.97 | 0.89 | 0.73 | 0.74 | 0.86 | 0.64 | 0.63 | |
PT | 14.32 | 18.57 | 15.20 | 20.12 | 15.82 | 20.02 | 17.24 | 18.45 |
Adsorbent | Detection method | Number of analyte | LOD/ (μg/L) | Recovery/ % | Advantage | Disadvantage | Ref. | |
---|---|---|---|---|---|---|---|---|
Prime HLB | UHPLC-Q-Orbitrap HRMS | 21 | 0.050- 0.30 | 80.70- 108.30 | good recovery | high solvent consumption | [ | |
Oasis HLB | UHPLC-MS/MS | 1 | 0.027 | 97.29- 102.71 | low LOD and good recovery | complicated process and few number of analyte detected | [ | |
HLB | UHPLC-MS/MS | 7 | 0.10- 0.30 | 70.50- 97.50 | good recovery | high LOD | [ | |
C18, Oasis HLB | UHPLC-MSD | 3 | 0.50- 1.0 | 73.40- 86.70 | low matrix effect | high LOD and low recovery | [ | |
PSA and acid aluminum oxide | UHPLC-QTOF-MS | 4 | 0.070- 0.30 | 77.10- 99.80 | low LOD and good recovery | troublesome experiment procedure | [ | |
Oasis HLB | LC-MS/MS | 3 | 0.15- 0.20 | 86.00- 91.20 | good recovery | complicated process | [ | |
Fe/CNT-SrTiO3 | HPLC | 1 | 0.033 | 64.24- 113.49 | low LOD and short time consuming | few number of analyte detected | [ | |
HLB | UHPLC-MS/MS | 1 | 0.50 | 82.20- 103.00 | good recovery | complicated process and few number of analyte detected | [ | |
UiO-67 | UHPLC-Q-Orbitrap HRMS | 7 | 0.060- 0.30 | 87.10- 105.58 | good recovery, low LOD, little material consumption | long material preparation time | this work |
Table 5 Comparison of this method with other approaches
Adsorbent | Detection method | Number of analyte | LOD/ (μg/L) | Recovery/ % | Advantage | Disadvantage | Ref. | |
---|---|---|---|---|---|---|---|---|
Prime HLB | UHPLC-Q-Orbitrap HRMS | 21 | 0.050- 0.30 | 80.70- 108.30 | good recovery | high solvent consumption | [ | |
Oasis HLB | UHPLC-MS/MS | 1 | 0.027 | 97.29- 102.71 | low LOD and good recovery | complicated process and few number of analyte detected | [ | |
HLB | UHPLC-MS/MS | 7 | 0.10- 0.30 | 70.50- 97.50 | good recovery | high LOD | [ | |
C18, Oasis HLB | UHPLC-MSD | 3 | 0.50- 1.0 | 73.40- 86.70 | low matrix effect | high LOD and low recovery | [ | |
PSA and acid aluminum oxide | UHPLC-QTOF-MS | 4 | 0.070- 0.30 | 77.10- 99.80 | low LOD and good recovery | troublesome experiment procedure | [ | |
Oasis HLB | LC-MS/MS | 3 | 0.15- 0.20 | 86.00- 91.20 | good recovery | complicated process | [ | |
Fe/CNT-SrTiO3 | HPLC | 1 | 0.033 | 64.24- 113.49 | low LOD and short time consuming | few number of analyte detected | [ | |
HLB | UHPLC-MS/MS | 1 | 0.50 | 82.20- 103.00 | good recovery | complicated process and few number of analyte detected | [ | |
UiO-67 | UHPLC-Q-Orbitrap HRMS | 7 | 0.060- 0.30 | 87.10- 105.58 | good recovery, low LOD, little material consumption | long material preparation time | this work |
|
[1] | QU Jian, NI Yuwen, YU Haoran, TIAN Hongxu, WANG Longxing, CHEN Jiping. New pretreatment method for detecting petroleum hydrocarbons in soil: silica-gel dehydration and cyclohexane extraction [J]. Chinese Journal of Chromatography, 2023, 41(9): 814-820. |
[2] | GAO Yiyang, DING Yali, CHEN Luyu, DU Fang, XIN Xubo, FENG Juanjuan, SUN Mingxia, FENG Yang, SUN Min. Recent application advances of covalent organic frameworks for solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(7): 545-553. |
[3] | QIN Tongtong, GAO Li, ZHAO Wenjie. Application progress of hypercrosslinked porous organic polymers in cartridge-based solid phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(7): 554-561. |
[4] | XIA Baolin, WANG Shitao, YIN Jingjing, ZHANG Weiyi, YANG Na, LIU Qiang, WU Haijing. Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(7): 591-601. |
[5] | WANG Yuanyuan, LI Lulu, LÜ Jia, CHEN Yongyan, ZHANG Lan. Determination of 13 halobenzoquinone disinfection by-products in drinking water using solid phase extraction-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(6): 482-489. |
[6] | WANG Xuemei, HUANG Lixia, YUAN Na, HUANG Pengfei, DU Xinzhen, LU Xiaoquan. Progress in preparation of hollow nanomaterials and their application to sample pretreatment [J]. Chinese Journal of Chromatography, 2023, 41(6): 457-471. |
[7] | WU Shaoming, OUYANG Liqun, MENG Peng, HE Menghang, LIN Qin, CHEN Yankai, LIU Wenjing, SU Xiaoming, DAI Ming. Determination of 18 caine anesthetics in animal meat using solid phase extraction combined with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(5): 434-442. |
[8] | LU Huiyuan, WANG Lijuan, ZHANG Jiongkai, ZHANG Chizhong, LI Tianjuan, JI Ruixue, SHEN Weijian. Determination of four fatty acid ethyl esters in olive oil by solid phase extraction-gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(4): 359-365. |
[9] | HAN Linxue, ZHANG Xu, HU Xiaojian, ZHANG Haijing, QIU Tian, LIN Xiao, ZHU Ying. Determination of 12 typical personal care products in human urine samples by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(4): 312-322. |
[10] | YE Hanzhang, LIU Tingting, DING Yongli, GU Jingjing, LI Yuhao, WANG Qi, ZHANG Zhan’en, WANG Xuedong. Recent advances in the development and application of effervescence-assisted microextraction techniques [J]. Chinese Journal of Chromatography, 2023, 41(4): 289-301. |
[11] | ZHANG Xu, HAN Linxue, QIU Tian, HU Xiaojian, ZHU Ying, YANG Yanwei. Determination of phenoxyacetic herbicides, metabolites of organophosphorus and pyrethroid pesticides in human urine using solid phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 224-232. |
[12] | XUE Kunpeng, YU Lingyu, REN Xingfa, TU Bingfang, CHEN Chao, XU Ting, HE Huan, HU Shuai. Determination of 15 carbonyl compounds in soil using improved solid phase extraction-high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(3): 265-273. |
[13] | WANG Jin, YE Kaixiao, TIAN Yan, LIU Ke, LIANG Liuling, LI Qingqian, HUANG Ning, WANG Xinting. Simultaneous determination of 22 antibiotics in environmental water samples by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 241-249. |
[14] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[15] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||