Chinese Journal of Chromatography ›› 2023, Vol. 41 ›› Issue (9): 731-741.DOI: 10.3724/SP.J.1123.2022.09010
• Review • Previous Articles Next Articles
ZHOU Ranfeng1,2, ZHANG Huixian1, YIN Xiaoli2,*(), PENG Xitian1,*(
)
Received:
2023-02-28
Online:
2023-09-08
Published:
2023-09-15
Supported by:
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
MNPCs | organophosphorus | fruit | GC-FPD | 84.0 | -116.0 | π-π, hydrophobic | 0.018-0.045 μg/L | [ |
MWCNTs | procymidone, atrazine, methidathion, etc. | cabbage apple and orange | GC-MS/MS | 75.3 | -113.6 | π-π, hydrophobic | 0.1-2.6 μg/kg | [ |
Magnetic porous carbon | methomyl, isoprocarb, carbofuran, etc. | honey | LC-MS/MS | 61.6 | -112 | π-π, hydrophobic | 0.5-25 μg/kg | [ |
AAS/NZVI/GO | methomyl, carbaryl, isoprocarb, etc. | sewage | LC-MS | 93.4 | -97.2 | π-π, hydrophobic, electrostatic interaction | - | [ |
TP-MWCNTs | organophosphorus | vegetables | GC-MS | 73.5 | -114.2 | π-π, hydrophobic interaction | 0.81-7.63 μg/kg | [ |
Table 1 Applications of some nano-materials for pesticide residue analysis in recent years
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
MNPCs | organophosphorus | fruit | GC-FPD | 84.0 | -116.0 | π-π, hydrophobic | 0.018-0.045 μg/L | [ |
MWCNTs | procymidone, atrazine, methidathion, etc. | cabbage apple and orange | GC-MS/MS | 75.3 | -113.6 | π-π, hydrophobic | 0.1-2.6 μg/kg | [ |
Magnetic porous carbon | methomyl, isoprocarb, carbofuran, etc. | honey | LC-MS/MS | 61.6 | -112 | π-π, hydrophobic | 0.5-25 μg/kg | [ |
AAS/NZVI/GO | methomyl, carbaryl, isoprocarb, etc. | sewage | LC-MS | 93.4 | -97.2 | π-π, hydrophobic, electrostatic interaction | - | [ |
TP-MWCNTs | organophosphorus | vegetables | GC-MS | 73.5 | -114.2 | π-π, hydrophobic interaction | 0.81-7.63 μg/kg | [ |
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
HP-Nu-902-X | sulfonamides | milk | HPLC-UV | 73.8 | -100.5 | π-π, interaction | 0.25 ng/mL | [ |
RAM-MMIPs | tetracyclines | egg | HPLC-UV | 84.2 | -96.5 | electrostatic and hydrophobic interaction | 2.21-2.67 μg/L | [ |
YS-Fe3O4@GC | sulfonamides | milk, meat | HPLC-UV | 77.2 | -118.0 | π-π, electrostatic interaction | 0.11-0.25 μg/L | [ |
Magnetic porous carbon | sulfonamides | milk | HPLC-DAD | 76.9 | -109.0 | π-π, cation-π interaction, hydrogen bond | 0.02-0.04 ng/mL | [ |
Fe3O4@CS-IL NPs | sulfonamides | milk | HPLC-MS/MS | 85.9 | -107.5 | π-π, electrostatic interaction | 0.04-0.19 μg/kg | [ |
Table 2 Applications of some nano-materials for veterinary drug residue analysis in recent years
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
HP-Nu-902-X | sulfonamides | milk | HPLC-UV | 73.8 | -100.5 | π-π, interaction | 0.25 ng/mL | [ |
RAM-MMIPs | tetracyclines | egg | HPLC-UV | 84.2 | -96.5 | electrostatic and hydrophobic interaction | 2.21-2.67 μg/L | [ |
YS-Fe3O4@GC | sulfonamides | milk, meat | HPLC-UV | 77.2 | -118.0 | π-π, electrostatic interaction | 0.11-0.25 μg/L | [ |
Magnetic porous carbon | sulfonamides | milk | HPLC-DAD | 76.9 | -109.0 | π-π, cation-π interaction, hydrogen bond | 0.02-0.04 ng/mL | [ |
Fe3O4@CS-IL NPs | sulfonamides | milk | HPLC-MS/MS | 85.9 | -107.5 | π-π, electrostatic interaction | 0.04-0.19 μg/kg | [ |
Nano-material | Analytes | Matrix | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
SAC-MNPs | Pb(Ⅱ) | red pepper | SQT-FAAS | 102.6 | -106.6 | charge transfer | 0.01-0.03 ng/mL | [ |
MMOF | Hg(Ⅱ) | shrimp | CVAAS | 82.0 | -112.0 | electrostatic interaction | 0.015 μg/kg | [ |
MnFe2O4-cellulose | Gd(Ⅱ) | lettuce | FAAS | 95 | charge transfer | 0.5 μg/L | [ | |
MWCNTs@MgAl2O4@TiO2 | Pb(Ⅱ) | garlic | FAAS | 91.0 | -100.0 | electrostatic interaction | 0.42 μg/L | [ |
Fe3O4-Ti3AlC2 | Cd(Ⅱ), Co(Ⅱ) | food | FAAS | 92.0 | -101.0 | electrostatic interaction | 0.093l, 0.297 μg/L | [ |
Table 3 Applications of some nano-materials for heavy metal analysis in recent years
Nano-material | Analytes | Matrix | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
SAC-MNPs | Pb(Ⅱ) | red pepper | SQT-FAAS | 102.6 | -106.6 | charge transfer | 0.01-0.03 ng/mL | [ |
MMOF | Hg(Ⅱ) | shrimp | CVAAS | 82.0 | -112.0 | electrostatic interaction | 0.015 μg/kg | [ |
MnFe2O4-cellulose | Gd(Ⅱ) | lettuce | FAAS | 95 | charge transfer | 0.5 μg/L | [ | |
MWCNTs@MgAl2O4@TiO2 | Pb(Ⅱ) | garlic | FAAS | 91.0 | -100.0 | electrostatic interaction | 0.42 μg/L | [ |
Fe3O4-Ti3AlC2 | Cd(Ⅱ), Co(Ⅱ) | food | FAAS | 92.0 | -101.0 | electrostatic interaction | 0.093l, 0.297 μg/L | [ |
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanism | LODs | Ref. |
---|---|---|---|---|---|---|---|
Novel α-Fe2O3 nanocubes | DON, AFB1 | mung | - | 94.4-128.0, 93.3-128.3 | electrostatic interaction | 0.18 ng/mL, 0.01 ng/mL | [ |
MGO/MOF-808@ MIP | AFBs | rice | LC-MS/MS | - | π-π, hydrogen bonds | 0.09 ng/mL | [ |
PEG-MWCNTs-MNP | AFB1 | milk | UHPLC-Q-Exactive HRMS | 81.8-106.4 | π-π, hydrophobic, hydrogen bonds | 0.005-0.050 μg/kg | [ |
MWCNTs-Fe3O4 | AFB1 | grain | UPLC-MS/MS | 73.5-112.9 | π-π, hydrophobic | 0.0021-5.4457 μg/kg | [ |
MOF-235 | AFBs | vegetable oils | UPLC-MS/MS | 90.1-99.2 | π-π | - | [ |
Table 4 Applications of some nano-materials for mycotoxin analysis in recent years
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanism | LODs | Ref. |
---|---|---|---|---|---|---|---|
Novel α-Fe2O3 nanocubes | DON, AFB1 | mung | - | 94.4-128.0, 93.3-128.3 | electrostatic interaction | 0.18 ng/mL, 0.01 ng/mL | [ |
MGO/MOF-808@ MIP | AFBs | rice | LC-MS/MS | - | π-π, hydrogen bonds | 0.09 ng/mL | [ |
PEG-MWCNTs-MNP | AFB1 | milk | UHPLC-Q-Exactive HRMS | 81.8-106.4 | π-π, hydrophobic, hydrogen bonds | 0.005-0.050 μg/kg | [ |
MWCNTs-Fe3O4 | AFB1 | grain | UPLC-MS/MS | 73.5-112.9 | π-π, hydrophobic | 0.0021-5.4457 μg/kg | [ |
MOF-235 | AFBs | vegetable oils | UPLC-MS/MS | 90.1-99.2 | π-π | - | [ |
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
rGO/ZnFe2O4 | estrogens | fish | HPLC-DAD | 73.5 | -104.1 | π-π, hydrogen bonds | 0.01-0.02 ng/mL | [ |
Fe3O4/GO | melamine | dairy products | HPLC-UV | 97.2 | -103.1 | π-π, electrostatic interaction | 0.03 μg/L | [ |
MWCNT-MNP | PAHs | milk | GC-MS | 86.1 | -100.3 | π-π | 0.040-0.075 μg/kg | [ |
NH2-Zn/Fe-MIL-8 | phytohormones | vegetable | HPLC | 82.6 | -98.1 | π-π, hydrogen bonds | 0.07-0.15 ng/mL | [ |
nano-g-C3N4/UiO- 66-NH2 | carmine, brilliant blue | blueberry | HPLC | 82.6 | -105.8 | electrostatic interaction | 0.08-0.8 ng/mL | [ |
Table 5 Applications of some nano-materials in other pollutants in recent years
Nano-material | Analytes | Matrices | Detection method | Recoveries/ % | Adsorption mechanisms | LODs | Ref. | |
---|---|---|---|---|---|---|---|---|
rGO/ZnFe2O4 | estrogens | fish | HPLC-DAD | 73.5 | -104.1 | π-π, hydrogen bonds | 0.01-0.02 ng/mL | [ |
Fe3O4/GO | melamine | dairy products | HPLC-UV | 97.2 | -103.1 | π-π, electrostatic interaction | 0.03 μg/L | [ |
MWCNT-MNP | PAHs | milk | GC-MS | 86.1 | -100.3 | π-π | 0.040-0.075 μg/kg | [ |
NH2-Zn/Fe-MIL-8 | phytohormones | vegetable | HPLC | 82.6 | -98.1 | π-π, hydrogen bonds | 0.07-0.15 ng/mL | [ |
nano-g-C3N4/UiO- 66-NH2 | carmine, brilliant blue | blueberry | HPLC | 82.6 | -105.8 | electrostatic interaction | 0.08-0.8 ng/mL | [ |
|
[1] | LIU Wei, JIA Dongxue, LIAN Wenhui, ZHAO Yu. Recent advances in the applications of metal-organic frameworks-based molecularly imprinted materials [J]. Chinese Journal of Chromatography, 2023, 41(8): 651-661. |
[2] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[3] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[4] | OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies [J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121. |
[5] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[6] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[7] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[8] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[9] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
[10] | JIANG Wenqian, CHEN Yumei, BI Wentao. Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(10): 901-910. |
[11] | YANG Han, TANG Wenqi, ZENG Chu, MENG Shasha, XU Ming. Rational design of high performance metal organic framework stationary phase for gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 853-865. |
[12] | ZOU Xiaowei, LIU Xing, ZHANG Jianming. Advances in thin layer chromatography coupled with mass spectrometry technology [J]. Chinese Journal of Chromatography, 2023, 41(1): 24-36. |
[13] | MAYIRA Abulitifu, ZHONG Zihao, BAI Xi. Progress in the application of preparative gas chromatography in separating volatile compounds [J]. Chinese Journal of Chromatography, 2023, 41(1): 37-46. |
[14] | ZHAI Rongrong, GAO Wen, LI Mengning, YANG Hua. Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines [J]. Chinese Journal of Chromatography, 2022, 40(9): 782-787. |
[15] | LU Chenhui, ZHANG Yi, SU Yujie, WANG Wenlong, FENG Yongwei. Advances in separation and analysis of aromatic amino acids in food [J]. Chinese Journal of Chromatography, 2022, 40(8): 686-693. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 343
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 269
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||