Chinese Journal of Chromatography ›› 2025, Vol. 43 ›› Issue (4): 297-308.DOI: 10.3724/SP.J.1123.2024.04012
• Reviews • Previous Articles Next Articles
HU Yangyang1, YANG Ge2,*(), QU Feng1,*(
)
Received:
2024-05-29
Online:
2025-04-08
Published:
2025-03-26
Supported by:
Type | Targets | Aptamer sequences (5'-3') | Screening round | Affinity determina- tion methods | KD/ (nmol/L) |
---|---|---|---|---|---|
Pesticides | tebuconazole, inaben- fide, mefenacet[ | CGTACGGAATTCGCTAGCAGCGTCCACGAGTGTGG- TGTGGATCCGAGCTCCACGTG, etc. | 5 | isothermal titration calorimetry (ITC) | 10.00-100.00 |
glyphosate (GlyP)[ | GGACAGCTGGCCGCGTAGCGAGACACGTACAAGG- TACTATACGGCTGGCATATGTATCTG | 8 | fluorescence assay | 30.73±1.25* | |
thiamethoxam (TMX)[ | GTCGACGGATCCACCGACCATGCAAAGATGCACAA- AAACGACAGCAGCTGCAGGTCGAC | 9 | gold nanoparticle colorimetric assay | 118.34±13.85* | |
Toxins | T2 toxin[ | GTATATCAAGCATCGCGTGTTTACACATGCGAGAG- GTGAA | 10 | fluorescence assay | 20.80±3.10* |
gonyautoxin 1/4 (GTX1/4)[ | AACCTTTGGTCGGGCAAGGTAGGTT | 8 | biolayer interfer- ometry (BLI) | 21.90 | |
domoic acid (DA)[ | AAAAATAATTTAAATTTTCTACCCAATGCTTTTCGC- ATAA | 16 | fluorescence assay | 62.07±19.97* | |
tetrodotoxin (TTX)[ | TCAAATTTTCGTCTACTCAATCTTTCTGTCTTATC | 16 | fluorescence assay | 44.12±15.38* | |
saxitoxin (STX)[ | CTTTTTACAAAATTCTCTTTTTACCTATATTATGAA- CAGA | 16 | fluorescence assay | 61.44±23.18* | |
gliotoxin[ | CATGTGTCCACATGGAGGTGACCT | 8 | BLI, ITC | 196.00 | |
okadaic acid[ | ATTTGACCATGTCGAGGGAGACGCGCAGTCGCTAC- CACCT | 8 | fluorescence assay | 5.63±3.55* | |
Antibiotics | penicillin G (Pen G)[ | CACCAGTCAGACAGCACGGTGACTGGAGTGACGTC- GGTACCTGAGATCGAGTGACGTCGGTACCTG | 9 | electrochemical sensing | 105.15±1.94* |
patulin[ | GGCCCGCCAACCCGCATCATCTACACTGATATTTTA- CCTT | 15 | fluorescence assay | 21.83±5.02* | |
ofloxacin[ | TGGCGCTTAGGTGTAATAACCTGAGGACGGCTTGG, TGGTTAAACCACGGTGAACCACTGCGCAGTAGGTC | 7 | balanced filtration | 130.10, 159.10 | |
Drugs | ractopamine (RAC)[ | AGCAGCACAGAGGTCAGATGGTCTCTACTAAAAGT- TTTGATCATACCGTTCACTAATTGACCTATGCGTGC- TACCGTGAA | 16 | GO adsorption | 54.22±8.02* |
synthetic cannabinoids (SCs)[ | C6-NH2-AGGAATTCAGATCTCCCTGCAGTGGTGTTC- AATGTTTTTGTGCTGTTCTGTACTGGCGCCTCGAGG- AGCTCAGGATCCCG-SH | 5 | electrochemical sensing | - | |
sulfamethazine (SMZ)[ | CGTTAGACG | 7 | fluorescence assay | 24.60 | |
ephedrine[ | TCCGTCGGCGGCGGCCCCTTCCTACAGCTTTCCCG- GTCGC | 10 | ITC | 2.86±0.24* | |
tramadol (TH)[ | CTTAAACCTGGTCGGATAGTCTTCGAGACTCGCGG- TCGCATTT | 10 | fluorescence assay | 178.40 | |
L-carnitine[ | ACCTTGCGTGCTCACGGCAGCCTCTCGGACAGCCC- TGTGT | 13 | resonance rayleigh scattering (RRS) | - | |
Biological metabolites | β-carotene[ | CAGCTCAGAAGCTTGATCCTCCCACAATTATCACGT- AGTGTGCGGGTCACGCAATCTGACGACTCGAAGTC- GTGCATCTG | 6 | fluorescence assay | 5.04±1.99* |
25-hydroxyvitamin D3[ | AGCAGCACAGAGGTCATGGGGGGTGTGACTTTGGT- GTGCCTATGCGTGCTACGGAA | 4 | ITC | 11.00 | |
sarcosine[ | TAGGGAAGAGAAGGACATATGATGTGCCGCGCTT- CCCTTGCCGCTCAAAACAGACCACCCACTTTGACT- AGTACATGACCACTTGA | 8 | fluorescence assay | 0.33±0.05* | |
Organic pollutant | nonylphenol (NP)[ | ATGCGGATCCCGCGCGGCCGGCCAGTGCGCGAAG- CTTGCGC | 5 | gold nanoparticle colorimetric assay | 194.20±65.90* |
Table 1 Application of graphene oxide (GO)-systematic evolution of ligands by exponential enrichment (SELEX) technique in aptamer screening of small molecule targets
Type | Targets | Aptamer sequences (5'-3') | Screening round | Affinity determina- tion methods | KD/ (nmol/L) |
---|---|---|---|---|---|
Pesticides | tebuconazole, inaben- fide, mefenacet[ | CGTACGGAATTCGCTAGCAGCGTCCACGAGTGTGG- TGTGGATCCGAGCTCCACGTG, etc. | 5 | isothermal titration calorimetry (ITC) | 10.00-100.00 |
glyphosate (GlyP)[ | GGACAGCTGGCCGCGTAGCGAGACACGTACAAGG- TACTATACGGCTGGCATATGTATCTG | 8 | fluorescence assay | 30.73±1.25* | |
thiamethoxam (TMX)[ | GTCGACGGATCCACCGACCATGCAAAGATGCACAA- AAACGACAGCAGCTGCAGGTCGAC | 9 | gold nanoparticle colorimetric assay | 118.34±13.85* | |
Toxins | T2 toxin[ | GTATATCAAGCATCGCGTGTTTACACATGCGAGAG- GTGAA | 10 | fluorescence assay | 20.80±3.10* |
gonyautoxin 1/4 (GTX1/4)[ | AACCTTTGGTCGGGCAAGGTAGGTT | 8 | biolayer interfer- ometry (BLI) | 21.90 | |
domoic acid (DA)[ | AAAAATAATTTAAATTTTCTACCCAATGCTTTTCGC- ATAA | 16 | fluorescence assay | 62.07±19.97* | |
tetrodotoxin (TTX)[ | TCAAATTTTCGTCTACTCAATCTTTCTGTCTTATC | 16 | fluorescence assay | 44.12±15.38* | |
saxitoxin (STX)[ | CTTTTTACAAAATTCTCTTTTTACCTATATTATGAA- CAGA | 16 | fluorescence assay | 61.44±23.18* | |
gliotoxin[ | CATGTGTCCACATGGAGGTGACCT | 8 | BLI, ITC | 196.00 | |
okadaic acid[ | ATTTGACCATGTCGAGGGAGACGCGCAGTCGCTAC- CACCT | 8 | fluorescence assay | 5.63±3.55* | |
Antibiotics | penicillin G (Pen G)[ | CACCAGTCAGACAGCACGGTGACTGGAGTGACGTC- GGTACCTGAGATCGAGTGACGTCGGTACCTG | 9 | electrochemical sensing | 105.15±1.94* |
patulin[ | GGCCCGCCAACCCGCATCATCTACACTGATATTTTA- CCTT | 15 | fluorescence assay | 21.83±5.02* | |
ofloxacin[ | TGGCGCTTAGGTGTAATAACCTGAGGACGGCTTGG, TGGTTAAACCACGGTGAACCACTGCGCAGTAGGTC | 7 | balanced filtration | 130.10, 159.10 | |
Drugs | ractopamine (RAC)[ | AGCAGCACAGAGGTCAGATGGTCTCTACTAAAAGT- TTTGATCATACCGTTCACTAATTGACCTATGCGTGC- TACCGTGAA | 16 | GO adsorption | 54.22±8.02* |
synthetic cannabinoids (SCs)[ | C6-NH2-AGGAATTCAGATCTCCCTGCAGTGGTGTTC- AATGTTTTTGTGCTGTTCTGTACTGGCGCCTCGAGG- AGCTCAGGATCCCG-SH | 5 | electrochemical sensing | - | |
sulfamethazine (SMZ)[ | CGTTAGACG | 7 | fluorescence assay | 24.60 | |
ephedrine[ | TCCGTCGGCGGCGGCCCCTTCCTACAGCTTTCCCG- GTCGC | 10 | ITC | 2.86±0.24* | |
tramadol (TH)[ | CTTAAACCTGGTCGGATAGTCTTCGAGACTCGCGG- TCGCATTT | 10 | fluorescence assay | 178.40 | |
L-carnitine[ | ACCTTGCGTGCTCACGGCAGCCTCTCGGACAGCCC- TGTGT | 13 | resonance rayleigh scattering (RRS) | - | |
Biological metabolites | β-carotene[ | CAGCTCAGAAGCTTGATCCTCCCACAATTATCACGT- AGTGTGCGGGTCACGCAATCTGACGACTCGAAGTC- GTGCATCTG | 6 | fluorescence assay | 5.04±1.99* |
25-hydroxyvitamin D3[ | AGCAGCACAGAGGTCATGGGGGGTGTGACTTTGGT- GTGCCTATGCGTGCTACGGAA | 4 | ITC | 11.00 | |
sarcosine[ | TAGGGAAGAGAAGGACATATGATGTGCCGCGCTT- CCCTTGCCGCTCAAAACAGACCACCCACTTTGACT- AGTACATGACCACTTGA | 8 | fluorescence assay | 0.33±0.05* | |
Organic pollutant | nonylphenol (NP)[ | ATGCGGATCCCGCGCGGCCGGCCAGTGCGCGAAG- CTTGCGC | 5 | gold nanoparticle colorimetric assay | 194.20±65.90* |
Target | Screening steps | Aptamer sequence (5'-3') | Screening round | Affinity determination method | KD/ (nmol/L) |
---|---|---|---|---|---|
N-Methyl mesopor- phyrin IX (NMM)[ | positive selection | AGCAGCACAGAGGTCAGATGTGCTCGA- CTATTGAGTCAGGGGGTTGGGGCAACA- ATAAGCCCTATGCGTGCTACCGTGAA | 3 | normalized fluorescence intensity determination | 1200.0±100.0* |
Virginiamycin-M1 (VGM-M1)[ | positive selection | GCAGAGGGACAGGGAAGATGTAGACAT- CTGTGCTCTTCGC | 4 | CE-ultraviolet (UV) | 49.0 |
Histone H4-K16Ac[ | counter and positive selection | AGACGTAAGTTAATTGGACTTGGTCGTG- TGCGGCACAGCGATTGAAAT | 4 | surface plasmon resonance (SPR) | 47.0±24.0* |
Swine anaphylatoxin (C5a)[ | positive selection | TCGCTGTAGCTACAGGGTTTACCCGGTT- GGATGGAT | 6 | SPR | 4000.0 |
Glycosylated VEGF peptide fragment[ | positive and counter selection | GCACCCTAATGTGCAAGCTAATGCGGAA- TGGGGTCGGTTT | 8 | surface plasmon reso- nance imaging (SPRI) | 2500.0±400.0* |
Diethyl thiophosphate (DETP)[ | positive selection | GACGGGAGCTTGACACAGTCATTCCTTT- CTAGATGGTGGTT | - | gold nanoparticle colori- metric assay | 103.0±14.0* |
Clenbuterol hydro- chloride (Clen)[ | positive selection | AGGGCCTGGGCTGTTGAGGCAACGTCG- GTTTGTTTATTAA | 3 | capillary electrophoresis- laser induced fluorescence (LIF) | 931.5 |
Neuropeptide Y (NPY)[ | positive selection | AGCAGCACAGAGGTCAGATGCAAACCA- CAGCCTGATGGTTAGCGTATGTCATTTA- CGGACCTATGCGTGCTACCGTGAA | 4 | affinity capillary electro- phoresis (ACE) | 800.0 |
Table 2 Application of capillary electrophoresis (CE)-SELEX technique in aptamer screening of small molecule targets
Target | Screening steps | Aptamer sequence (5'-3') | Screening round | Affinity determination method | KD/ (nmol/L) |
---|---|---|---|---|---|
N-Methyl mesopor- phyrin IX (NMM)[ | positive selection | AGCAGCACAGAGGTCAGATGTGCTCGA- CTATTGAGTCAGGGGGTTGGGGCAACA- ATAAGCCCTATGCGTGCTACCGTGAA | 3 | normalized fluorescence intensity determination | 1200.0±100.0* |
Virginiamycin-M1 (VGM-M1)[ | positive selection | GCAGAGGGACAGGGAAGATGTAGACAT- CTGTGCTCTTCGC | 4 | CE-ultraviolet (UV) | 49.0 |
Histone H4-K16Ac[ | counter and positive selection | AGACGTAAGTTAATTGGACTTGGTCGTG- TGCGGCACAGCGATTGAAAT | 4 | surface plasmon resonance (SPR) | 47.0±24.0* |
Swine anaphylatoxin (C5a)[ | positive selection | TCGCTGTAGCTACAGGGTTTACCCGGTT- GGATGGAT | 6 | SPR | 4000.0 |
Glycosylated VEGF peptide fragment[ | positive and counter selection | GCACCCTAATGTGCAAGCTAATGCGGAA- TGGGGTCGGTTT | 8 | surface plasmon reso- nance imaging (SPRI) | 2500.0±400.0* |
Diethyl thiophosphate (DETP)[ | positive selection | GACGGGAGCTTGACACAGTCATTCCTTT- CTAGATGGTGGTT | - | gold nanoparticle colori- metric assay | 103.0±14.0* |
Clenbuterol hydro- chloride (Clen)[ | positive selection | AGGGCCTGGGCTGTTGAGGCAACGTCG- GTTTGTTTATTAA | 3 | capillary electrophoresis- laser induced fluorescence (LIF) | 931.5 |
Neuropeptide Y (NPY)[ | positive selection | AGCAGCACAGAGGTCAGATGCAAACCA- CAGCCTGATGGTTAGCGTATGTCATTTA- CGGACCTATGCGTGCTACCGTGAA | 4 | affinity capillary electro- phoresis (ACE) | 800.0 |
Target | Nucleic acid library type | Aptamer sequences (5'-3') | Screening round | Affinity determination method | KD/ (μmol/L) |
---|---|---|---|---|---|
Dichlorvos (DV)[ | DNA | GGAAGAACATGTGAGCAAAAGGCCAGCAAAAGG- CCAGGAACCGTAAAAAGGCCGCGTTGCTGGC | 8 | ITC | 0.850 |
Amyloid β-peptide (Aβ)[ | RNA | UAGCGUAUGCCACUCUCCUGGGACCCCCCGCCG- GAUGGCCA, UUUGGGGUGUCGGGCGAUUUUUA- GGGUUGGGCCAGGCCGU | 9 | Fluorescence anisotropy measurements | 21.6, 10.9 |
Zinc(II)-protoporphy- rin IX (ZnPPIX)[ | DNA | GGCGGGGGGTTGCTCTACTTGATGATCTGCGCTA- TCGCCGT | 11 | fluorescence assay | 9.53±1.86* |
Brassinolide (BL)[ | DNA | GCGGATCCCGCGCCGTGCAGAGGGAGACCGC | 9 | gold nanoparticle colorimetric assay | 0.0173 |
Bisphenol A (BPA)[ | DNA | GGACGCGCGAAGAATATAAGGTGGCCTGGCCGC- GCG | 11 | gold nanoparticle colorimetric assay | 0.0379 |
Table 3 Application of gold nanoparticle-assisted (GNP)-SELEX technique in aptamer screening of small molecule targets
Target | Nucleic acid library type | Aptamer sequences (5'-3') | Screening round | Affinity determination method | KD/ (μmol/L) |
---|---|---|---|---|---|
Dichlorvos (DV)[ | DNA | GGAAGAACATGTGAGCAAAAGGCCAGCAAAAGG- CCAGGAACCGTAAAAAGGCCGCGTTGCTGGC | 8 | ITC | 0.850 |
Amyloid β-peptide (Aβ)[ | RNA | UAGCGUAUGCCACUCUCCUGGGACCCCCCGCCG- GAUGGCCA, UUUGGGGUGUCGGGCGAUUUUUA- GGGUUGGGCCAGGCCGU | 9 | Fluorescence anisotropy measurements | 21.6, 10.9 |
Zinc(II)-protoporphy- rin IX (ZnPPIX)[ | DNA | GGCGGGGGGTTGCTCTACTTGATGATCTGCGCTA- TCGCCGT | 11 | fluorescence assay | 9.53±1.86* |
Brassinolide (BL)[ | DNA | GCGGATCCCGCGCCGTGCAGAGGGAGACCGC | 9 | gold nanoparticle colorimetric assay | 0.0173 |
Bisphenol A (BPA)[ | DNA | GGACGCGCGAAGAATATAAGGTGGCCTGGCCGC- GCG | 11 | gold nanoparticle colorimetric assay | 0.0379 |
Screening technique | Separation medium | Screening mechanisms | Advantages | Disadvantages |
---|---|---|---|---|
GO-SELEX | GO | π-π stacking | simple, quick, high throughput, high affinity | spontaneous desorption, mistaken desorption, incomplete separation, cytotoxicity |
CE-SELEX | separation buffer | charge-to-mass ratio and migration rate | multiple screening modes, no fixing, high screening efficiency | difficulty in accurately collecting, susceptible to the properties of the solution, difficulty in defining aptamer-binding conditions |
GNP-SELEX | gold nanoparticle | van der Waals forces and electrostatic interaction | high specificity and stability, easy and low cost, colorimetric detection and chemiluminescence detection, directly monitorable | excessive adsorption |
Table 4 Separation media, screening mechanisms, advantages and disadvantages of GO-SELEX, CE-SELEX and GNP-SELEX techniques
Screening technique | Separation medium | Screening mechanisms | Advantages | Disadvantages |
---|---|---|---|---|
GO-SELEX | GO | π-π stacking | simple, quick, high throughput, high affinity | spontaneous desorption, mistaken desorption, incomplete separation, cytotoxicity |
CE-SELEX | separation buffer | charge-to-mass ratio and migration rate | multiple screening modes, no fixing, high screening efficiency | difficulty in accurately collecting, susceptible to the properties of the solution, difficulty in defining aptamer-binding conditions |
GNP-SELEX | gold nanoparticle | van der Waals forces and electrostatic interaction | high specificity and stability, easy and low cost, colorimetric detection and chemiluminescence detection, directly monitorable | excessive adsorption |
|
[1] | JIANG Liushan, ZHOU Qingxiang. Recent progress in magnetic covalent organic framework materials for the enrichment and detection of typical organic pollutants [J]. Chinese Journal of Chromatography, 2025, 43(2): 107-119. |
[2] | CHENG Yingchao, GAO Yiyang, LI Xiaomin, CHEN Luyu, DU Fang, GUO Jie, MENG Yitong, SUN Min, FENG Juanjuan. Research advance of solid-phase microextraction based on covalent organic framework materials [J]. Chinese Journal of Chromatography, 2025, 43(2): 120-130. |
[3] | YUAN Keyu, XIONG Jun, YUAN Bifeng. Research advances in the transplacental transfer efficiencies of environmental pollutants [J]. Chinese Journal of Chromatography, 2025, 43(1): 13-21. |
[4] | JIANG Bo, GAO Bo, WEI Shuxian, LIANG Zhen, ZHANG Lihua, ZHANG Yukui. Progress in enrichment methods for protein N-phosphorylation [J]. Chinese Journal of Chromatography, 2024, 42(7): 623-631. |
[5] | XUE Jieying, LIU Zheyi, WANG Fangjun. Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis [J]. Chinese Journal of Chromatography, 2024, 42(7): 681-692. |
[6] | XIE Baoxuan, LYU Yang, LIU Zhen. Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems [J]. Chinese Journal of Chromatography, 2024, 42(6): 508-523. |
[7] | ZHENG Desheng, TANG Wenqi, ZHU Jianping, GU Zhiyuan. Preparation and application of chromatographic stationary phase based on two-dimensional materials [J]. Chinese Journal of Chromatography, 2024, 42(6): 524-532. |
[8] | KANG Jingyan, SHI Yanping. Recent advances in research on sample pretreatment methods based on supramolecular-derived porous organic polymers [J]. Chinese Journal of Chromatography, 2024, 42(6): 496-507. |
[9] | LIU Jiawei, TANG Changwei, XIA Yiran, BAI Quan. Recent progress of chromatographic techniques for antibody purification [J]. Chinese Journal of Chromatography, 2024, 42(6): 533-543. |
[10] | SHAO Yuchen, WEN Yalun, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2023 [J]. Chinese Journal of Chromatography, 2024, 42(5): 401-409. |
[11] | FANG Min, WU Yaping, ZHANG Wenmin, ZHANG Lan, YANG Zhenquan. Research progress of novel functional materials in extraction of algal toxins [J]. Chinese Journal of Chromatography, 2024, 42(3): 225-233. |
[12] | ZHI Mengxue, WANG Jianshe. Advances in the applications of exposomics in the identification of environmental pollutants and their health hazards [J]. Chinese Journal of Chromatography, 2024, 42(2): 142-149. |
[13] | LIU Huinan, SUN Zhendong, LIU Qian S., ZHOU Qunfang, JIANG Guibin. Synthetic phenolic compounds perturb lipid metabolism and induce obesogenic effects [J]. Chinese Journal of Chromatography, 2024, 42(2): 131-141. |
[14] | LI Fang, LUO Qian. Application advances of mass spectrometry imaging technology in environmental pollutants analysis and their toxicity research [J]. Chinese Journal of Chromatography, 2024, 42(2): 150-158. |
[15] | SONG Yuanyuan, QI Zenghua, CAI Zongwei. Application of multiomics mass spectrometry in the research of chemical exposome [J]. Chinese Journal of Chromatography, 2024, 42(2): 120-130. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||