Chinese Journal of Chromatography ›› 2024, Vol. 42 ›› Issue (2): 150-158.DOI: 10.3724/SP.J.1123.2023.11005
• Reviews • Previous Articles Next Articles
Received:
2023-11-06
Online:
2024-02-08
Published:
2024-02-20
Supported by:
MSI technology | Mass analyzer | Analytes | Vacuum condition | Spatial resolution/μm | Disadvantages |
---|---|---|---|---|---|
MALDI-MSI | TOF MS | metabolites, proteins, peptides, | vacuum | up to 5.0 | matrix application, ionic suppression in low |
drugs and pollutants | ambient | up to 1.4 | mass compound analysis | ||
DESI-MSI | TOF MS | <2000 Da compounds | ambient | up to 10 | low spatial resolution |
SI-MSI | TOF MS | elements | vacuum | up to 0.05 | instrument expensive, ionic fragmentation |
<1000 Da compounds | up to 1.0 | ||||
LA-ICP-MSI | TOF MS | elements | ambient | up to 5.0 | matrix and fractionation effects |
Table 1 Comparision of common MSI technologies
MSI technology | Mass analyzer | Analytes | Vacuum condition | Spatial resolution/μm | Disadvantages |
---|---|---|---|---|---|
MALDI-MSI | TOF MS | metabolites, proteins, peptides, | vacuum | up to 5.0 | matrix application, ionic suppression in low |
drugs and pollutants | ambient | up to 1.4 | mass compound analysis | ||
DESI-MSI | TOF MS | <2000 Da compounds | ambient | up to 10 | low spatial resolution |
SI-MSI | TOF MS | elements | vacuum | up to 0.05 | instrument expensive, ionic fragmentation |
<1000 Da compounds | up to 1.0 | ||||
LA-ICP-MSI | TOF MS | elements | ambient | up to 5.0 | matrix and fractionation effects |
Classification | Pollutants | Samples | MSI technology | Spatial resolutions/μm | Ref. |
---|---|---|---|---|---|
Heavy | CH3Hg(Ⅱ), iAs(Ⅲ), Ag(Ⅰ) and Cd (Ⅱ) | zebrafish | LA-ICP-MSI | 20 | [ |
metals | Cd | worm strains | LA-ICP-MSI | 8 | [ |
Cd | sunflower | LA-ICP-MSI | 110 | [ | |
Particulates | Ag nanoparticle | mouse kidney | LA-ICP-MSI | 20 | [ |
PbO nanoparticles | mouse | LA-ICP-MSI | 20 | [ | |
CeO2 nanoparticles | mouse | LA-ICP-MSI | 100 | [ | |
La2O3 nanoparticle | Pfaffia glomerata | LA-ICP-MSI | 100 | [ | |
graphene and graphene oxide particle | soybean plants | LA-ICP-MSI | 110, 80 | [ | |
black carbon | mouse | MALDI-MSI | 20 | [ | |
Organic | perfluorooctanoic acid | zebrafish | MALDI-MSI | 50 | [ |
pollutants | perfluorooctane sulfonate | mouse | MALDI-MSI | 50 | [ |
dinotefuran and acetamiprid | honeybees | MALDI-MSI | 30 | [ | |
imidacloprid, methiocarb | Cotoneaster horizontalis | DESI-MSI | 100, 50 | [ | |
dimethoate | Kalanchoe blossfeldiana | ||||
chlorinated paraffins and hexabromocyclododecane | zebrafish | AFAI-DESI-MSI | 200 | [ |
Table 2 Applications of MSI technologies in distribution characteristics of environmental pollutions in organisms
Classification | Pollutants | Samples | MSI technology | Spatial resolutions/μm | Ref. |
---|---|---|---|---|---|
Heavy | CH3Hg(Ⅱ), iAs(Ⅲ), Ag(Ⅰ) and Cd (Ⅱ) | zebrafish | LA-ICP-MSI | 20 | [ |
metals | Cd | worm strains | LA-ICP-MSI | 8 | [ |
Cd | sunflower | LA-ICP-MSI | 110 | [ | |
Particulates | Ag nanoparticle | mouse kidney | LA-ICP-MSI | 20 | [ |
PbO nanoparticles | mouse | LA-ICP-MSI | 20 | [ | |
CeO2 nanoparticles | mouse | LA-ICP-MSI | 100 | [ | |
La2O3 nanoparticle | Pfaffia glomerata | LA-ICP-MSI | 100 | [ | |
graphene and graphene oxide particle | soybean plants | LA-ICP-MSI | 110, 80 | [ | |
black carbon | mouse | MALDI-MSI | 20 | [ | |
Organic | perfluorooctanoic acid | zebrafish | MALDI-MSI | 50 | [ |
pollutants | perfluorooctane sulfonate | mouse | MALDI-MSI | 50 | [ |
dinotefuran and acetamiprid | honeybees | MALDI-MSI | 30 | [ | |
imidacloprid, methiocarb | Cotoneaster horizontalis | DESI-MSI | 100, 50 | [ | |
dimethoate | Kalanchoe blossfeldiana | ||||
chlorinated paraffins and hexabromocyclododecane | zebrafish | AFAI-DESI-MSI | 200 | [ |
Pollutants | Organism | Range of m/z | Detected mode | Ref. | |
---|---|---|---|---|---|
Fipronil | zebrafish | 650- | 950 | P and N | [ |
Graphene nanoparticles | Eisenia fetida | 100- | 1000 | P | [ |
Chlorinated paraffins and hexabromocyclododecane | zebrafish | 80- | 1200 | P and N | [ |
Bisphenol S | mouse liver | 200- | 1100 | N | [ |
mouse kidney | [ | ||||
mouse spleen | [ | ||||
PM2.5 | mouse placenta and fetuses | 200- | 1100 | N | [ |
benzo[a]pyrene | mouse liver | 140- | 1100 | P | [ |
Cd | mouse liver | 120- | 1800 | P and N | [ |
Climbazole | zebrafish | 100- | 1000 | P | [ |
Table 3 Applications of MSI technologies in toxic effects of environmental pollutions
Pollutants | Organism | Range of m/z | Detected mode | Ref. | |
---|---|---|---|---|---|
Fipronil | zebrafish | 650- | 950 | P and N | [ |
Graphene nanoparticles | Eisenia fetida | 100- | 1000 | P | [ |
Chlorinated paraffins and hexabromocyclododecane | zebrafish | 80- | 1200 | P and N | [ |
Bisphenol S | mouse liver | 200- | 1100 | N | [ |
mouse kidney | [ | ||||
mouse spleen | [ | ||||
PM2.5 | mouse placenta and fetuses | 200- | 1100 | N | [ |
benzo[a]pyrene | mouse liver | 140- | 1100 | P | [ |
Cd | mouse liver | 120- | 1800 | P and N | [ |
Climbazole | zebrafish | 100- | 1000 | P | [ |
|
[1] | FANG Min, WU Yaping, ZHANG Wenmin, ZHANG Lan, YANG Zhenquan. Research progress of novel functional materials in extraction of algal toxins [J]. Chinese Journal of Chromatography, 2024, 42(3): 225-233. |
[2] | ZHI Mengxue, WANG Jianshe. Advances in the applications of exposomics in the identification of environmental pollutants and their health hazards [J]. Chinese Journal of Chromatography, 2024, 42(2): 142-149. |
[3] | LIU Huinan, SUN Zhendong, LIU Qian S., ZHOU Qunfang, JIANG Guibin. Synthetic phenolic compounds perturb lipid metabolism and induce obesogenic effects [J]. Chinese Journal of Chromatography, 2024, 42(2): 131-141. |
[4] | SONG Yuanyuan, QI Zenghua, CAI Zongwei. Application of multiomics mass spectrometry in the research of chemical exposome [J]. Chinese Journal of Chromatography, 2024, 42(2): 120-130. |
[5] | YOU Lei, SUN Guohao, YU Di, LIU Xinyu, XU Guowang. New advances in exposomics-analysis methods and research paradigms based on chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(2): 109-119. |
[6] | ZHOU Suxin, KUANG Yixin, ZHENG Juan, OUYANG Gangfeng. Research progress of stationary phase of gas chromatography based on chiral organic frameworks [J]. Chinese Journal of Chromatography, 2024, 42(1): 1-12. |
[7] | ZHOU Ranfeng, ZHANG Huixian, YIN Xiaoli, PENG Xitian. Progress in the application of novel nano-materials to the safety analysis of agricultural products [J]. Chinese Journal of Chromatography, 2023, 41(9): 731-741. |
[8] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[9] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[10] | OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies [J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121. |
[11] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[12] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[13] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[14] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[15] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||