Loading...

List of Issues

    Chinese Journal of Chromatography
    2023, Vol. 41, No. 7
    Online: 08 July 2023

    For Selected: Toggle Thumbnails
    Reviews
    Recent application advances of covalent organic frameworks for solid-phase extraction
    GAO Yiyang, DING Yali, CHEN Luyu, DU Fang, XIN Xubo, FENG Juanjuan, SUN Mingxia, FENG Yang, SUN Min
    2023, 41 (7):  545-553.  DOI: 10.3724/SP.J.1123.2022.12021
    Abstract ( 326 )   HTML ( 56 )   PDF (810KB) ( 340 )  
    Supporting Information

    Covalent organic frameworks (COFs) are a type of crystalline porous polymers. It firstly prepared by thermodynamically controlled reversible polymerization to obtain chain units and connecting small organic molecular building units with a certain symmetry. These polymers are widely used in gas adsorption, catalysis, sensing, drug delivery, and many other fields. Solid-phase extraction (SPE) is a fast and simple sample pretreatment technology that can enrich analytes and improve the accuracy and sensitivity of analysis and detection; it is extensively employed in food safety detection, environmental pollutant analysis, and several other fields. How to improve the sensitivity, selectivity, and detection limit of the method during sample pretreatment have become a topic of great interest. COFs have recently been applied to sample pretreatment owing to their low skeleton density, large specific surface area, high porosity, good stability, facile design and modification, simple synthesis, and high selectivity. At present, COFs have also attracted extensive attention as new extraction materials in the field of SPE. These materials have been applied to the extraction and enrichment of diverse types of pollutants in food, environmental, and biological samples, such as heavy metal ions, polycyclic aromatic hydrocarbons, phenol, chlorophenol, chlorobenzene, polybrominated diphenyl ethers, estrogen, drug residues, pesticide residues, etc. COFs can be synthesized from different materials and exert different effects on different extracts. New types of COFs can also be synthesized via modification to achieve better extraction effects. In this work, the main types and synthesis methods of COFs are introduced, and the most important applications of COFs in the fields of food, environment and biology in recent years are highlighted. The development prospects of COFs in the field of SPE are also discussed.

    Application progress of hypercrosslinked porous organic polymers in cartridge-based solid phase extraction
    QIN Tongtong, GAO Li, ZHAO Wenjie
    2023, 41 (7):  554-561.  DOI: 10.3724/SP.J.1123.2022.12003
    Abstract ( 207 )   HTML ( 33 )   PDF (1380KB) ( 136 )  

    Hypercrosslinked porous organic polymers (HCPs), a novel type of porous materials synthesized via the Friedel-Crafts reaction, are widely used in gas storage, heterogeneous catalysis, chromatographic separation, and organic pollutant capture. HCPs have the advantages of a wide monomer source, low cost, mild synthesis conditions, and easy functionalization. In recent years, HCPs have shown great application potential in solid phase extraction. Given their high specific surface area, excellent adsorption properties, diverse chemical structures, and easy chemical modification, HCPs have been successfully applied to the extraction of different types of analytes with efficient extraction performance. Based on the chemical structure of HCPs, their target analytes, and the adsorption mechanism, HCPs can be classified as hydrophobic, hydrophilic, and ionic species. Hydrophobic HCPs are usually constructed as extended conjugated structures by overcrosslinking aromatic compounds as monomers. Common monomers include ferrocene, triphenylamine, triphenylphosphine, etc. This type of HCPs shows good adsorption effects on nonpolar analytes such as benzuron herbicides and phthalates through strong π-π and hydrophobic interactions. Hydrophilic HCPs are prepared by introducing polar monomers or crosslinking agents, or by modifying polar functional groups. This type of adsorbent is commonly used to extract polar analytes such as nitroimidazole, chlorophenol, tetracycline, etc. In addition to hydrophobic forces, polar interactions, such as hydrogen-bonding and dipole-dipole interactions, also occur between the adsorbent and analyte. Ionic HCPs are mixed-mode solid phase extraction materials formed by introducing ionic functional groups into the polymer. Mixed-mode adsorbents usually have a dual reversed-phase/ion-exchange retention mechanism, which helps control the retention behavior of the adsorbent by adjusting the elution strength of the eluting solvent. In addition, the extraction mode can be switched by controlling the pH of the sample solution and eluting solvent. In this manner, matrix interferences can be removed while the target analytes are enriched. Ionic HCPs present a unique advantage in the extraction of acid-base drugs in water. The combination of new HCP extraction materials with modern analytical techniques, such as chromatography and mass spectrometry, has been widely used in environmental monitoring, food safety, and biochemical analyses. In this review, the characteristics and synthesis methods of HCPs are briefly introduced, and the application progress of different types of HCPs in cartridge-based solid phase extraction is described. Finally, the future outlook of HCP applications is discussed.

    Articles
    One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography
    WANG Xiaoqing, CUI Jian, GU Yiming, WANG Shuo, ZHOU Jin, WANG Shudong
    2023, 41 (7):  562-571.  DOI: 10.3724/SP.J.1123.2023.01005
    Abstract ( 234 )   HTML ( 39 )   PDF (5252KB) ( 142 )  

    As modified ligands with a wide range of sources, abundant functional groups, and good biocompatibility, polymers have been widely used in the development of silica-based chromatographic stationary phases. In this study, a poly(styrene-acrylic acid) copolymer-modified silica stationary phase (SiO2@P(St-b-AA)) was prepared via one-pot free-radical polymerization. In this stationary phase, styrene and acrylic acid were used as functional repeating units for polymerization and vinyltrimethoxylsilane (VTMS) was used as a silane coupling agent to link the copolymer and silica. Various characterization methods, such as Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, and Zeta potential analysis, confirmed the successful preparation of the SiO2@P(St-b-AA) stationary phase, which had a well-maintained uniform spherical and mesoporous structure. The retention mechanisms and separation performance of the SiO2@P(St-b-AA) stationary phase in multiple separation modes were then evaluated. Hydrophobic and hydrophilic analytes as well as ionic compounds were selected as probes for different separation modes, and changes in the retention of the analytes under various chromatographic conditions, including different methanol or acetonitrile contents and buffer pH values, were investigated. In reversed-phase liquid chromatography (RPLC) mode, the retention factors of alkyl benzenes and polycyclic aromatic hydrocarbons (PAHs) on the stationary phase decreased with increasing methanol content in the mobile phase. This finding could be attributed to the hydrophobic and π-π interactions between the benzene ring and analytes. The retention changes of alkyl benzenes and PAHs revealed that the SiO2@P(St-b-AA) stationary phase, similar to the C18 stationary phase, exhibited a typical reversed-phase retention behavior. In hydrophilic interaction liquid chromatography (HILIC) mode, as the acetonitrile content increased, the retention factors of hydrophilic analytes gradually increased, and a typical hydrophilic interaction retention mechanism was inferred. In addition to hydrophilic interaction, the stationary phase also demonstrated hydrogen-bonding and electrostatic interactions with the analytes. Compared with the C18 and Amide stationary phases prepared by our groups, the SiO2@P(St-b-AA) stationary phase exhibited excellent separation performance for the model analytes in the RPLC and HILIC modes. Owing to the presence of charged carboxylic acid groups in the SiO2@P(St-b-AA) stationary phase, exploring its retention mechanism in ionic exchange chromatography (IEC) mode is of great importance. The effect of the mobile phase pH on the retention time of organic bases and acids was further studied to explore the electrostatic interaction between the stationary phase and charged analytes. The results revealed that the stationary phase has weak cation exchange ability toward organic bases and electrostatically repels organic acids. Moreover, the retention of organic bases and acids on the stationary phase was influenced by the analyte structure and mobile phase. Thus, the SiO2@P(St-b-AA) stationary phase could provide multiple interactions, as demonstrated by the separation modes described above. The SiO2@P(St-b-AA) stationary phase showed excellent performance and reproducibility in the separation of mixed samples with different polar components, indicating that it has promising application potential in mixed-mode liquid chromatography. Further investigation of the proposed method confirmed its repeatability and stability. In summary, this study not only described a novel stationary phase that could be used in RPLC, HILIC, and IEC modes but also presented a facile “one-pot” preparation approach that could provide a new route for the development of novel polymer-modified silica stationary phases.

    Determination of catecholamines in urine by disperse solid-phase extraction-liquid chromatography based on Ti3C2Tx/polyimide composites
    ZHAO Yuanqing, HU Kai, YANG Cheng, HAN Pengzhao, LI Lixin, LIU Xiaobing, ZHANG Zhenqiang, ZHANG Shusheng
    2023, 41 (7):  572-581.  DOI: 10.3724/SP.J.1123.2022.09004
    Abstract ( 166 )   HTML ( 25 )   PDF (3867KB) ( 165 )  

    Neurotransmitters (NTs) are basic signaling chemicals used for communication between cells. The most well-known catecholamines (CAs) are epinephrine, norepinephrine, and dopamine. CAs are an important class of monoamine NTs that contain catechins and amine groups. The accurate determination of CAs in biological samples can provide essential information on potential pathogenic mechanisms. However, biological samples generally contain only trace levels of CAs. Therefore, sample pretreatment is necessary to separate and enrich CAs before instrument analysis. Dispersive solid-phase extraction (DSPE) technology combines the principles of liquid-liquid extraction and solid-phase extraction and is a useful method for purifying and enriching the target analytes in complex matrices. This method has the advantages of low solvent consumption, environmental safety, and high sensitivity and efficiency. In addition, the adsorbents used in DSPE do not need to be packed into a column and can simply be completely dispersed in the sample solution; this excellent feature greatly improves the extraction efficiency and simplifies the extraction process. Therefore, the development of new DSPE materials with high efficiency and adsorption capacity using simple preparation procedures has received wide attention from the research community. Carbon nitrides (MXenes) are a class of two-dimensional layered materials that possess good hydrophilicity, a large number of functional groups (-O, -OH, and -F), large layer spacing, different elemental compositions, excellent biocompatibility, and environmental friendliness. However, these materials have a small specific surface area and poor adsorption selectivity, which limits their applications in SPE. The separation selectivity of MXenes can be significantly improved by functional modification. Polyimide (PI) is a crosslinking product that is mainly formed by the condensation polymerization of binary anhydride and diamine. It has a unique crosslinked network structure, as well as a large number of carboxyl groups, and shows excellent characteristics. Therefore, the synthesis of new PI-functionalized Ti3C2Tx (Ti3C2Tx/PI) composites by growing a PI layer on the surface of two-dimensional MXene nanosheets in situ may not only overcome the adsorptive limitations of MXenes but also effectively improve their specific surface area and porous structure, thereby enhancing their mass transfer capacity, adsorption capacity, and selectivity.

    In this study, a Ti3C2Tx/PI nanocomposite was fabricated and successfully applied as a DSPE sorbent to enrich and concentrate trace CAs in urine samples. The prepared nanocomposite was examined using various characterization methods, including scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The effects of the extraction parameters on the extraction efficiency of Ti3C2Tx/PI were also investigated in detail. The adsorption performance of Ti3C2Tx/PI can be described by pseudo-second-order kinetics and the Freundlich isotherm model. The adsorption process appeared to occur on the outer surface, as well as surface voids, of the nanocomposite. The adsorption mechanism of Ti3C2Tx/PI indicated a chemical adsorption process based on multiple electrostatic, π-π, and hydrogen-bonding interactions. The optimal adsorption conditions included an adsorbent dosage of 20 mg, sample pH of 8, adsorption and elution times of 10 and 15 min, respectively, and eluent composed of acetic acid-acetonitrile-water (5∶47.5∶47.5, v/v/v). A sensitive method for detecting CAs in urine was subsequently developed by coupling Ti3C2Tx/PI as a DSPE sorbent with HPLC-FLD analysis. The CAs were separated on an Agilent ZORBAX ODS analytical column (250 mm×4.6 mm, 5 μm). Methanol and an aqueous solution of 20 mmol/L acetic acid were used as the mobile phases for isocratic elution. Under optimal conditions, the proposed DSPE-HPLC-FLD method exhibited good linearity in the range of 1-250 ng/mL with correlation coefficients >0.99. The limits of detection (LODs) and limits of quantification (LOQs) were calculated based on signal-to-noise ratios of 3 and 10 and found to be in the range of 0.20-0.32 and 0.7-1.0 ng/mL, respectively. The recoveries of the method were in the range of 82.50%-96.85% with RSDs≤9.96%. Finally, the proposed method was successfully applied to the quantification of CAs in urine samples from smokers and nonsmokers, thereby indicating its applicability for determining trace CAs.

    Determination of bisphenols in sediment by accelerated solvent extraction and solid-phase extraction purification coupled with ultra performance liquid chromatography-tandem mass spectrometry
    WANG Qiuxu, FENG Qiyan, ZHU Xueqiang
    2023, 41 (7):  582-590.  DOI: 10.3724/SP.J.1123.2022.12015
    Abstract ( 239 )   HTML ( 51 )   PDF (961KB) ( 277 )  

    Bisphenols are endocrine disruptors that are characterized with bioaccumulation, persistence, and estrogenic activity. Even low contents of bisphenols can exert adverse effects on human health and the ecological environment. Herein, a method combining accelerated solvent extraction and solid-phase extraction purification with ultra performance liquid chromatography-tandem mass spectrometry was developed for the accurate detection of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), and bisphenol AP (BPAP) in sediments. The mass spectrometric parameters of the seven bisphenols were optimized, and the response values, separation effects, and chromatographic peak shapes of the target compounds were compared under three different mobile phase conditions. The sediment samples were pretreated by accelerated solvent extraction, and orthogonal tests were used to optimize the extraction solvent, extraction temperature, and cycle number. The results showed that the use of 0.05% (v/v) ammonia and acetonitrile as the mobile phase for gradient elution could rapidly separate the seven bisphenols on an Acquity UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm). The gradient program was as follows: 0-2 min, 60%A; 2-6 min, 60%A-40%A; 6-6.5 min, 40%A; 6.5-7 min, 40%A-60%A; 7-8 min, 60%A. Orthogonal experiments indicated that the optimal extraction conditions were as follows: extraction solvent of acetonitrile, extraction temperature of 100 ℃, and cycle number of three. The seven bisphenols showed good linearity in the range of 1.0-200 μg/L, with correlation coefficients (r2) greater than 0.999, and the limits of detection were 0.01-0.3 ng/g. The recoveries for the seven bisphenols ranged from 74.9% to 102.8% at three spiking levels (2.0, 10, 20 ng/g), with relative standard deviations ranging from 6.2% to 10.3%. The established method was applied to detect the seven bisphenols in sediment samples collected from Luoma Lake and its inflow rivers. BPA, BPB, BPF, BPS, and BPAF were detected in the sediments of the lake, and BPA, BPF, and BPS were detected in the sediments of its inflow rivers. The detection frequency of BPA and BPF was 100%, and the contents of these bisphenols in the sediment were 11.9-38.0 ng/g and 11.0-27.3 ng/g, respectively. The developed method is simple, rapid with high accuracy and precision, and is suitable for the determination of the seven bisphenols in sediment.

    Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry
    XIA Baolin, WANG Shitao, YIN Jingjing, ZHANG Weiyi, YANG Na, LIU Qiang, WU Haijing
    2023, 41 (7):  591-601.  DOI: 10.3724/SP.J.1123.2022.09008
    Abstract ( 249 )   HTML ( 47 )   PDF (1247KB) ( 126 )  

    Antibacterials represent a pharmaceutical class that is extensively used and consumed worldwide. The presence of a large number of antibacterial agents in water could result in antibiotic resistance. Thus, the development of a fast, accurate, and high-throughput method to analyze these emerging contaminants in water is necessary. Herein, a method was developed to achieve the simultaneous determination of 43 antibacterials from nine pharmaceutical categories (i.e., sulfonamides, quinolones, fluoroquinolones, tetracyclines, lincosamides, macrolides, nitroimidazoles, diterpenes, and dihydrofolate reductase inhibitors) in water using automatic sample loading-solid phase extraction (SPE)-ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Because the properties of these 43 antibacterials are quite different, the main objective of this work is to develop an extraction procedure that would enable the simultaneous analysis of a wide range of multiclass antibacterials. Given this context, the work presented in this paper optimized the SPE cartridge type, pH, and sample loading amount.

    Multiresidue extraction was performed as follows. The water samples were filtered through 0.45 μm filter membranes, added with Na2EDTA and NaH2PO4, and pH-adjusted to 2.34 using H3PO4. The solutions were then mixed with the internal standards. An automatic sample loading device fabricated by the authors was used for sample loading, and Oasis HLB cartridges were used for enrichment and purification. The optimized UPLC conditions were as follows: chromatographic column, Waters Acquity UPLC BEH C18 column (50 mm×2.1 mm, 1.7 μm); mobile phases, methanol-acetonitrile (2∶8, v/v) solution containing 0.1% formic acid and 0.1% formic acid aqueous solution; flow rate, 0.3 mL/min; injection volume, 10 μL. The compounds were step scanned using an electrospray ionization source in the positive and multiple-reaction monitoring (MRM) modes, and analyzed by internal and external standard methods.

    The results showed that the 43 compounds achieved high linearity in their respective linear ranges, with correlation coefficients (r2) greater than 0.996. The limits of detection (LODs) of the 43 antibacterial agents ranged from 0.004 ng/L to 1.000 ng/L, and their limits of quantification (LOQs) ranged from 0.012 ng/L to 3.000 ng/L. The average recoveries ranged from 53.7% to 130.4%, and the relative standard deviations (RSDs) were between 0.9% and 13.2%. The method was successfully applied to the determination of six tap water samples from different districts and six water samples obtained from the Jiangyin section of the Yangtze River and Xicheng Canal. No antibacterial compound was detected in any of the tap water samples, but a total of 20 antibacterial compounds were detected in the river and canal water samples. Among these compounds, sulfamethoxazole showed the highest mass concentrations, ranging from 8.92 to 11.03 ng/L. The types and contents of antibacterials detected in the Xicheng Canal were greater than those found in the Yangtze River, and two kinds of diterpenes, namely tiamulin and valnemulin, were found easily and commonly in water sample. The findings indicate that antibacterial agents are widespread in environmental waters. The developed method is accurate, sensitive, rapid, and suitable for the detection of the 43 antibacterial compounds in water samples.

    Simultaneous determination of five indole/indazole amide-based synthetic cannabinoids in electronic cigarette oil by ultra performance liquid chromatography
    YANG Zhe, LYU Jianxia, WU Yidi, JIANG Liwei, LI Dongmei
    2023, 41 (7):  602-609.  DOI: 10.3724/SP.J.1123.2022.10014
    Abstract ( 272 )   HTML ( 31 )   PDF (1196KB) ( 123 )  

    Synthetic cannabinoids (SCs), which are considered some of the most widely abused new psychoactive substances available today, are much more potent than natural cannabis and display greater efficacy. New SCs can be developed by adding substituents such as halogen, alkyl, or alkoxy groups to one of the aromatic ring systems, or by changing the length of the alkyl chain. Following the emergence of the so-called first-generation SCs, further developments have led to eighth-generation indole/indazole amide-based SCs. Given that all SCs were listed as controlled substances on July 1, 2021, the technologies used to detect these substances must be quickly improved. Due to the sheer number of SCs, the chemical diversity and the fast update speed, it is challenging to determine and identify the new SCs. In recent years, several types of indole/indazole amide-based SCs have been seized, but systematic research on these compounds remains limited. Therefore, developing rapid, sensitive, and accurate quantitative methods to determine new SCs are of great importance. Compared with high performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC) shows higher resolution, better separation efficiency, and faster analysis speeds; thus, it can meet the demand for the quantitative analysis of indole/indazole amide-based SCs in seized materials.

    In this study, a UPLC method was developed for the simultaneous determination of five indole/indazole amide-based SCs, including N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-butyl-1H-indazole-3-carboxamide (ADB-BUTINACA), methyl 2-(1-(4-fluorobutyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate (4F-MDMB-BUTICA), N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (5F-MDMB-PICA), methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido)butanoate (MDMB-4en-PINACA), and N-(adamantan-1-yl)-1-(4-fluorobutyl)-1H-indazole-3-carboxamide (4F-ABUTINACA) in electronic cigarette oil; these SCs have been detected with increasing frequency in seized materials in recent years. The main factors influencing the separation and detection performance of the proposed method, including the mobile phase, elution gradient, column temperature, and detection wavelength, were optimized. The proposed method successfully quantified the five SCs in electronic cigarette oil via the external standard method. The samples were extracted using methanol, and the target analytes were separated on a Waters ACQUITY UPLC CSH C18 column (100 mm×2.1 mm, 1.7 μm) at column temperature of 35 ℃ and flow rate of 0.3 mL/min. The injection volume was 1 μL. The mobile phase consisted of acetonitrile and ultrapure water, and gradient elution was employed. The detection wavelengths were 290 and 302 nm. The five SCs were completely separated within 10 min under optimized conditions and showed good linear relationships between 1-100 mg/L, with correlation coefficients (r2) of up to 0.9999. The limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.6 mg/L, respectively. Precision was determined using standard solutions of the five SCs at mass concentrations of 1, 10, and 100 mg/L. The intra-day precision (n=6) was <1.5%, and the inter-day precision (n=6) was <2.2%. Accuracy was determined by spiking electronic cigarette oil with low (2 mg/L), moderate (10 mg/L), and high (50 mg/L) levels of the five SCs, with six replicates per determination. The recoveries of the five SCs were 95.5%-101.9%, and their relative standard deviations (RSDs, n=6) were 0.2%-1.5%, with accuracies ranging from -4.5% to 1.9%. The proposed method showed good performance when applied to the analysis of real samples. It is accurate, rapid, sensitive, and effective for the determination of five indole/indazole amide-based SCs in electronic cigarette oil. Thus, it satisfies the requirements for practical determination and provides a reference for the determination of SCs with similar structures by UPLC.

    High-throughput screening of multi-pesticide residues in animal-derived foods by QuEChERS-online gel permeation chromatography-gas chromatography-tandem mass spectrometry
    LI Jie, JU Xiang, WANG Yanli, TIAN Qiyan, LIANG Xiuqing, LI Haixia, LIU Yanming
    2023, 41 (7):  610-621.  DOI: 10.3724/SP.J.1123.2022.10010
    Abstract ( 245 )   HTML ( 45 )   PDF (2266KB) ( 151 )  

    Improvements in living standards have led to an increase in the consumption of animal-derived foods. Pesticides may be used illegally during animal breeding as well as meat production and processing for pest control and preservation. Pesticides applied to crops may also be enriched in animal tissues through the food chain, thereby increasing the risk of pesticide residue accumulation in muscles and visceral tissues and endangering human health. China has stipulated maximum residue limits for pesticide residues in livestock and poultry meat and their viscera. Many other major developed countries and organizations, including the European Union, Codex Alimentarius Commission, and Japan, have also set maximum residue limits for these residues (0.005-10, 0.004-10, and 0.001-10 mg/kg, respectively). Research on pretreatment technologies for pesticide residue detection in plant-derived foods is widely available, but insufficient attention has been paid to animal-derived foods. Thus, high-throughput detection technologies for pesticide residues in animal-derived foods are limited. The impurities that can interfere with the detection process for plant-derived foods mainly include organic acids, polar pigments, and other small molecular compounds; by contrast, the matrix of animal-derived foods is much more complex. Macromolecular proteins, fats, small molecular amino acids, organic acids, and phospholipids can interfere with the detection of pesticide residues in animal-derived foods. Thus, selecting the appropriate pretreatment and purification technology is of great importance. In this study, the QuEChERS technique was combined with online gel permeation chromatography-gas chromatography-tandem mass spectrometry (GPC-GC-MS/MS) to determine 196 pesticide residues in animal-derived foods. The samples were extracted with acetonitrile, purified using the QuEChERS technique coupled with online GPC, detected by GC-MS/MS, determined in multiple reaction monitoring mode (MRM), and quantified using the external standard method. The effects of the extraction solvent and purification agent type on the extraction efficiency and matrix removal of the method were optimized. The purification effect of online GPC on the sample solution was investigated. The optimal distillate receiving time was obtained by studying the recoveries of the target substances and matrix effects over different distillate receiving periods to achieve the effective introduction of target substances and efficient matrix removal. Further, the advantages of the QuEChERS technique combined with online GPC were evaluated. The matrix effects of 196 pesticides were assessed; ten pesticide residues showed moderate matrix effects, while four pesticide residues showed strong matrix effects. A matrix-matched standard solution was used for quantification. The 196 pesticides showed good linearity in the range of 0.005-0.2 mg/L, with correlation coefficients greater than 0.996. The limits of detection and quantification were 0.002 and 0.005 mg/kg, respectively. The recoveries of 196 pesticides at spiked levels of 0.01, 0.05, and 0.20 mg/kg were 65.3%-126.2%, with relative standard deviations (RSDs) of 0.7%-5.7%. The proposed method is rapid, accurate, and sensitive; thus, it is suitable for the high-throughput screening and detection of multiple pesticide residues in animal-derived foods.

    Determination of 41 veterinary drug residues in livestock and poultry meat using a composite purification system coupled with direct analysis in real time-tandem mass spectrometry
    XIE Yingshuang, WANG Bo, LEI Chunni, LIU Lanxia, ZHANG Huan, BAI Xingbin, KOU Zonghong
    2023, 41 (7):  622-631.  DOI: 10.3724/SP.J.1123.2022.11022
    Abstract ( 176 )   HTML ( 40 )   PDF (1222KB) ( 123 )  
    Supporting Information

    In a market environment where food safety problems still occur despite repeated prohibitions, food safety problems caused by veterinary drug residues and biological safety problems caused by the transfer of drug resistance have attracted much attention. Herein, a method based on a compound purification system coupled with direct analysis in real time-tandem mass spectrometry (DART-MS/MS) was established to determine 41 different types of veterinary drug residues in livestock and poultry products. First, a single-standard solution sampling method was used to optimize the selection of the best quasi-molecular ion, two daughter ions, and their cone-hole and collision voltages; qualitative and quantitative ion pairs are composed of a quasi-molecular ion and its corresponding daughter ion. The abundance ratios of the drug compounds in standard solutions of the solvent and matrix mixtures were then calculated according to the requirements of the European Union 2002/657 specification. DART-MS/MS was subsequently developed for the accurate characterization and quantitative analysis of the veterinary drugs. Finally, a composite purification pretreatment system was formed by combining the primary secondary amine (PSA) and octadecyl bonded silica gel (C18) of a QuEChERS technology with multiwalled carbon nanotubes (MWCNTs) to achieve the one-step purification of the drug compounds. The influence of the key parameters of the DART ion source on the determination of the drugs was investigated using the peak areas of the quantitative ions as the criterion. The optimum conditions were as follows: ion source temperature of 350 ℃, 12-Dip-it Samplers module, sample injection speed of 0.6 mm/s, and external vacuum pump pressure of -75 kPa. According to the differences in the dissociation constant (pKa) ranges of the 41 types of veterinary drug compounds and the characteristics of the sample matrixes, the extraction solvent, matrix-dispersing solvent, and purification method were optimized based on the recovery. The extraction solvent was 1.0% acetonitrile formate solution, and the pretreatment column included MWCNTs containing 50 mg of PSA and 50 mg of C18. The three chloramphenicol drugs showed a linear relationship in the ranges of 0.5-20 μg/L with correlation coefficients of 0.9995-0.9997,and the detection and quantification limits of three chloramphenicol drugs were 0.1 and 0.5 μg/kg, respectively. The 38 other drugs, including quinolones, sulfonamides, and nitro-imidazoles showed a linear relationship in the ranges of 2-200 μg/L with correlation coefficients of 0.9979-0.9999, and the detection and quantification limits of the 38 other drugs were 0.5 and 2.0 μg/kg, respectively. The recoveries of the 41 veterinary drugs at low, medium, and high spiked levels in chicken, pork, beef, and mutton samples were 80.0%-109.6%, with intra- and inter-day precisions of 0.3%-6.8% and 0.4%-7.0%, respectively. A total of 100 batches of animal meat (pork, chicken, beef, and mutton; 25 batches each) and known positive samples were simultaneously analyzed using the national standard method and the detection method established in this study. Sulfadiazine (89.2, 78.1, and 105.3 μg/kg) was detected in three batches of pork samples, and sarafloxacin (56.3, 102.0 μg/kg) was detected in two batches of chicken samples and no veterinary drugs were detected in the other samples; both methods yielded consistent results for known positive samples. The proposed method is rapid, simple, sensitive, environmentally friendly, and suitable for the simultaneous screening and detection of multiple veterinary drug residues in animal meat.

    Technical Note
    Determination of kojic acid in fermented foods by solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry
    CHEN Dongyang, ZHANG Hao, ZHANG Lei, WANG Yihong, WANG Xiaodan, FENG Jiali, LIANG Jing, ZHONG Xuan
    2023, 41 (7):  632-639.  DOI: 10.3724/SP.J.1123.2022.10002
    Abstract ( 300 )   HTML ( 39 )   PDF (797KB) ( 141 )  

    Kojic acid naturally appears in fermented foods and can be formed during the aerobic fermentation process induced by Aspergillus and Penicillium fungi. It is widely used in the food industry because it exhibits antibacterial and antifungal properties and does not affect food taste. However, recent studies indicate that kojic acid may be a potential carcinogen. Therefore, assessing the health risks of kojic acid in fermented foods are of great importance, and developing a sensitive and accurate analytical method for this compound is a significant endeavor. Much efforts have been devoted to the detection of kojic acid using electrochemistry, high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). HPLC and HPLC-MS/MS are the analytical techniques most often employed for this purpose. Of these two methods, HPLC-MS/MS displays excellent sensitivity and is the optimal selective technique. Pretreatment is usually necessary for kojic acid determination because of the complex matrix effects of fermented foods. However, few researches on the determination of kojic acid in food are available, and, to the best of our knowledge, the determination of kojic acid using solid-phase extraction (SPE) pretreatment has not been reported yet. Herein, a convenient, sensitive, and accurate method was developed to determine kojic acid in fermented foods using solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The pretreatment conditions, such as the extraction solvent, cartridge, rinse solvent, and eluent, were systematically optimized. The samples, including soy sauce, vinegar, liquor, sauce, fermented soya bean, and fermented bean curd, were extracted with 0.1% formic acid-absolute ethyl alcohol and purified using a PRiME HLB cartridge. Kojic acid was separated using an ACQUITY UPLC® BEH C18 column (100 mm×2.1 mm, 1.7 μm) with formic acid-acetonitrile (1∶999, v/v) and formic acid-5 mmol/L ammonium acetate (1∶999, v/v) solutions as the mobile phases under gradient elution mode. MS was performed in electrospray positive ionization (ESI+) and multiple reaction monitoring (MRM) modes. An internal standard method was used for quantification. Under optimized conditions, good linearity was achieved at mass concentrations of 5.0-100.0 μg/L, with a correlation coefficient (r) of 0.9994. The limits of detection and quantification of the method for kojic acid were 2-5 μg/kg and 6-15 μg/kg, respectively. Good recoveries of 86.8%-111.7%, intra-day precisions of 1.0%-7.9% (n=6), and inter-day precisions of 2.7%-10.2% (n=5) were also obtained. The matrix effect was evaluated by establishing a matrix-matching calibration curve, and weak inhibitory effects were found in vinegar and liquor; moderate inhibitory effects in fermented bean curd, fermented soya bean, and soy sauce; and a strong inhibitory effect in sauce. The developed method was used to detect kojic acid in 240 fermented foods, and the results showed that the detection rate of vinegar was the highest, followed by liquor, sauce, soy sauce, fermented soya bean, and fermented bean curd, the contents were 5.69-2272 μg/kg. Matrix interferences can be significantly reduced by optimizing the pretreatment and detection procedures. The proposed method is sensitive, accurate, and can be used to analyze kojic acid in fermented foods.