Chinese Journal of Chromatography ›› 2023, Vol. 41 ›› Issue (7): 562-571.DOI: 10.3724/SP.J.1123.2023.01005
• Articles • Previous Articles Next Articles
WANG Xiaoqing1,2, CUI Jian2, GU Yiming2, WANG Shuo2, ZHOU Jin2, WANG Shudong2,*()
Received:
2023-01-14
Online:
2023-07-08
Published:
2023-06-30
CLC Number:
WANG Xiaoqing, CUI Jian, GU Yiming, WANG Shuo, ZHOU Jin, WANG Shudong. One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography[J]. Chinese Journal of Chromatography, 2023, 41(7): 562-571.
Fig. 1 One-pot synthesis of the poly(styrene-acrylic acid) copolymer-modified silica stationary phase (SiO2@P(St-b-AA)) VTMS: vinyltrimethoxylsilane; St: styrene; AA: acrylic acid; AIBN: 2,2-azobis(2-methylpropionitrile).
Fig. 3 Scanning electron microscopes of (a) SiO2, (b) SiO2@P(St-b-AA), (c) SiO2@P(St-b-AA) after packing one time and (d) three times under 50 MPa pressure
Fig. 5 Evaluation of retention and separation performance of hydrophobic analytes in RPLC mode a, c. effects of MeOH content in mobile phase on the retention factors of (a) alkyl benzenes and (c) PAHs; b, d. separation chromatograms of (b) alkyl benzenes and (d) PAHs on different columns. Mobile phase: MeOH-H2O (50∶50, v/v) for PSA (stationary phase: SiO2@P(St-b-AA)) and Amide columns in (b) and (d), MeOH-H2O (75∶25, v/v) for C18 column in (b) and MeOH-H2O (60∶40, v/v) for C18 column in (d). Peak identifications: (1) toluene, (2) ethylbenzene, (3) n-propylbenzene, (4) n-butylbenzene, (5) pentylbenzene in (b); (1) benzene, (2) naphthalene, (3) acenaphthylene, (4) fluorene in (d).
Fig. 6 Evaluation of retention and separation performance of hydrophilic analytes in hydrophilic interaction liquid chromatography mode a. effect of ACN content in mobile phase on the retention factors of hydrophilic analytes; b. separation chromatograms of hydrophilic analytes on different columns. Mobile phase: ACN-100 mmol/L NH4FA (pH=6.2) (90∶10, v/v) for all columns in (b). Peak identifications: 1. 5-fluorouracil; 2. uracil; 3. uridine; 4. orotic acid; 5. 5-fluorocytosine; 6. cytidine; 7. cytosine.
Fig. 8 Retention time changes of four organic bases and four organic acids with the mobile phase pH and the separation chromatograms on the PSA column The effect of pH in the mobile phase on the retention times of (a) organic bases and (c) organic acids. Separation chromatograms of (b) organic bases and (d) organic acids on the PSA column. Mobile phase: ACN-100 mmol/L NH4FA (85∶15, v/v) in (a) and (c) (solid symbol); ACN-H2O (85∶15, v/v) in (c) (hollow symbol); ACN-100 mmol/L NH4FA (pH=6.2) (97∶3, v/v) in (d). Peak identifications: (1) theophylline, (2) theobromine, (3) dyphylline, (4) ribavirin in (b); (1) 4-aminobenzoic acid, (2) 4-hydroxybenzoic acid, (3) benzoic acid, (4) acetylsalicylic acid in (d).
Fig. 9 (a) Injection stability of the PSA column and (b) repeatability of the synthesis procedure for SiO2@P(St-b-AA) Mobile phase: ACN-100 mmol/L NH4FA (pH=6.2) (85∶15, v/v). Peak identifications: 1. toluene; 2. benzoic acid; 3. uridine; 4. ribavirin; 5. cytidine.
No. | Analyte | RSDs/% | |
---|---|---|---|
Intra-day stability (n=6) | Inter-day stability (n=4) | ||
1 | toluene | 0.10 | 0.39 |
2 | benzoic acid | 0.92 | 0.85 |
3 | uridine | 0.75 | 0.48 |
4 | ribavirin | 0.95 | 0.18 |
5 | cytidine | 1.0 | 0.33 |
Table 1 Intra-day stability and inter-day stability of mixed samples on the PSA column
No. | Analyte | RSDs/% | |
---|---|---|---|
Intra-day stability (n=6) | Inter-day stability (n=4) | ||
1 | toluene | 0.10 | 0.39 |
2 | benzoic acid | 0.92 | 0.85 |
3 | uridine | 0.75 | 0.48 |
4 | ribavirin | 0.95 | 0.18 |
5 | cytidine | 1.0 | 0.33 |
|
[1] | WU Lijuan, YANG Lili, HU Enyu, WANG Meifei, YANG Chao, YIN Mingming. Determination of 14 aniline and benzidine compounds in soil by gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1127-1134. |
[2] | MI Kun, ZHANG Wentian, WEN Luhong, WANG Jin. Rapid detection of four amphetamine-type drugs in hair by pulsed direct current electrospray mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1141-1148. |
[3] | YANG Zhanqiang, ZHANG Fangfang, HAN Chunxia, ZHENG Hongguo. Determination of boric acid and silicic acid in mineral water by nonsuppressed ion chromatography [J]. Chinese Journal of Chromatography, 2023, 41(12): 1121-1126. |
[4] | TONG Xin, JIN Yang, JIN Jing, LIU Ping, WU Chunyan, TONG Shengqiang. Off-line comprehensive two-dimensional countercurrent chromatography-liquid chromatography separation of Curcuma volatile oil [J]. Chinese Journal of Chromatography, 2023, 41(12): 1115-1120. |
[5] | DONG Jieqiong, XIAO Jin, ZHOU Xin, LI Ning, WANG Xuesong, KANG Junjie. Determination of 14 β-agonists in animal meat by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1106-1114. |
[6] | WANG Xianli, RAO Qinxiong, ZHANG Qicai, DU Penghui, SONG Weiguo. Determination of 14 perfluoroalkyl substances in Chinese mitten crab by multi-plug filtration cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1095-1105. |
[7] | ZHAO Qianru, LIU Hua, MENG Yaping, LI Xiang, GAO Ruifang, LI Xiangsheng. Simultaneous determination of 83 glucocorticoids in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(12): 1084-1094. |
[8] | ZHAO Yuan, LIU Xin, ZHANG Yidan, ZHANG Jian, LIU Xiang, YANG Guofeng. Tandem mass tag-based quantitative proteomics analysis of plasma and plasma exosomes in Parkinson’s disease [J]. Chinese Journal of Chromatography, 2023, 41(12): 1073-1083. |
[9] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[10] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[11] | GUO Dongmei, XIA Yiran, Mujeeb ur RAHMAN, WANG Jianzhong, LIU Jiawei, BAI Quan. Preparation of a block copolymer-based temperature-responsive affinity chromatography stationary phase for antibody separation and purification [J]. Chinese Journal of Chromatography, 2023, 41(12): 1045-1051. |
[12] | ZHANG Zhenyong. Chiral capillary gas chromatography for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane [J]. Chinese Journal of Chromatography, 2023, 41(12): 1135-1140. |
[13] | NING Xiao, JIN Shaoming, LI Zhiyuan, YANG Chongjun, MAO Da, CAO Jin. Liquid chromatography-high resolution mass spectrometry analysis of 300 illegally added drugs and their analogues in functional milk powder for the elderly [J]. Chinese Journal of Chromatography, 2023, 41(11): 960-975. |
[14] | TONG Lanyan, XU Bozhou, NIE Xuemei, WANG Xiujuan, MA Jiahui, GUO Wei, LI Genrong, GONG Yingkun, XU Xiuli. Determination of 22 mycotoxins in milk by liquid chromatography-quadrupole/orbitrap mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(11): 986-994. |
[15] | ZHANG Luxing, ZHOU Zheng, CAO Lin, QIAN Jiang. Determination of seven mycotoxins in cereals by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry based on the self-built database [J]. Chinese Journal of Chromatography, 2023, 41(11): 1002-1009. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||