色谱 ›› 2025, Vol. 43 ›› Issue (6): 571-584.DOI: 10.3724/SP.J.1123.2024.11030
钱柬坤1,2, 何润茗1, 方珂1, 李晨龙1,3, 鲍珊1, 顾雯1,*(), 唐宋1,4,*(
)
收稿日期:
2024-11-30
出版日期:
2025-06-08
发布日期:
2025-05-21
通讯作者:
* Tel:(010)50930183,E-mail:guwen@nieh.chinacdc.cn(顾雯);
Tel:(010)50930185,E-mail:tangsong@nieh.chinacdc.cn(唐宋).基金资助:
QIAN Jiankun1,2, HE Runming1, FANG Ke1, LI Chenlong1,3, BAO Shan1, GU Wen1,*(), TANG Song1,4,*(
)
Received:
2024-11-30
Online:
2025-06-08
Published:
2025-05-21
Supported by:
摘要:
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)广泛存在于各类生产及生活环境中,因毒性高对公众健康构成了严重威胁。PAHs及其衍生物可通过多种途径进入人体,在细胞色素P450酶的催化作用下,生成Ⅰ相代谢产物,并进一步在Ⅱ相代谢阶段与谷胱甘肽、葡萄糖醛酸等物质结合,生成水溶性结合产物。不同代谢阶段的产物在人体内的分布与表现形式可作为PAHs暴露的重要标志物。然而,由于不同结构特征的PAHs在代谢机制及其产物种类方面存在显著差异,针对性细化研究策略对于基于生物监测的健康风险评估具有重要意义。系统开展PAHs及其衍生物代谢产物的时-量-效关系研究,明确PAHs及其衍生物的代谢产物类型及体内暴露水平,不仅有助于建立精准、高效、稳定的生物标志物谱库,还可为进一步开展人体生物监测提供科学依据和技术支撑。有鉴于此,本文系统梳理了母体PAHs及其硝基化、氧化和烷基化衍生物的主要代谢途径及产物类别,重点探讨了母体PAHs在人体内代谢转化的最新研究进展,旨在为揭示PAHs及其衍生物的暴露特征、健康风险评估和暴露溯源等研究提供科学参考。
中图分类号:
钱柬坤, 何润茗, 方珂, 李晨龙, 鲍珊, 顾雯, 唐宋. 人体内多环芳烃及其衍生物的代谢转化研究进展[J]. 色谱, 2025, 43(6): 571-584.
QIAN Jiankun, HE Runming, FANG Ke, LI Chenlong, BAO Shan, GU Wen, TANG Song. Progress in the metabolic and biotransformation of polycyclic aromatic hydrocarbons and their derivatives in humans[J]. Chinese Journal of Chromatography, 2025, 43(6): 571-584.
图1 苯并[a]芘体内代谢途径
Fig. 1 Metabolic pathways of benzo[a]pyrene in vivo* stable formation in vitro; CYP: cytochrome P450; EH: epoxide hydrolase; AKR: aldo-keto reductase; NADPH: reduced nicotinamide adenine dinucleotide phosphate.
图2 PAHs及其衍生物的代谢途径与代谢产物个数
Fig. 2 Metabolic pathways and the numbers of metabolites of PAHs and their derivativesPAHs: polycyclic aromatic hydrocarbons; OPAHs: oxygenated-PAHs; NPAHs: nitrated-PAHs; LPAHs: low-molecular-weight PAHs; HPAHs: high-molecular-weight PAHs; APAHs: alkylated-PAHs.
Compound | Categories | Phase Ⅰ metabolites | Phase Ⅱ metabolites | Refs. |
---|---|---|---|---|
Pyrene | HPAHs | 1-hydroxypyrene, 1,6-dihydroxypyrene, 1,8-dihydroxypyrene, pyrene-1,6-quinone, pyrene-1,8-quinone | 2 isomers of hydroxypyrene glucuronide | [ |
Benzo[a]anthracene | HPAHs | benzo[a]anthracene-3,4-dihydrodiol, anti-benzo[a]anthracene-3,4-dihydrodiol-1,2-epoxide, benzo[a]anthracene-3,4-catechol, benzo[a]anthracene-3,4-orthoquinone | [ | |
Benzo[a]pyrene | HPAHs | benzo[a]pyrene radical-cation, 8-(benzo[a]pyrene-6-yl)-guanine, 7-(benzo[a]pyrene-6-yl)-adenine, 7-(benzo[a]pyrene-6-yl)-guanine, benzo[a]pyrene-2,3-oxide, 3-hydroxybenzo[a]pyrene, benzo[a]pyrene-7,8-oxide, benzo[a]pyrene-catechol, trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, r7,t8,t9-trihydroxy-c-10-(N2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene, benzo[a]pyrene tetrol, benzo[a]pyrene-7,8-quinone, 10-(N2-deoxyguanosyl)-9,10-dihydro-9-hydroxybenzo[a]pyrene-7,8-dione* | [ | |
Dibenzo[a,h]anthracene | HPAHs | 3,4-arene oxide enantiomers of dibenz[a,h]anthracene, trans-dibenz[a,h]anthracene-3,4-dihydrodiol, dibenz[a,h]anthracene-3,4-diol-1,2-epoxide | [ | |
Dibenzo[def,p]chrysene | HPAHs | dibenzo[def,p]chrysene radical cation, dibenzo[def,p]chrysene-11,12-epoxide, 2 isomers of dibenzo[def,p]chrysene-trans-11,12-dihydrodiol, 4 isomers of dibenzo[def,p]chrysene-trans-11,12-dihydrodiol-13,14-epoxide, 4 isomers of dibenzo[def,p]chrysene-11,12,13,14-tetrahydrotetraol, dibenzo[def,p]chrysene-11,12-catechol, dibenzo[def,p]chrysene-11,12-semiquinone, dibenzo[def,p]chrysene-11,12-quinone | [ | |
Naphthalene | LPAHs | naphthalene-1,2-oxide, 1,2-dihydronaphthalene-1,2-diol, 1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydronaphthalene, 1-hydroxynaphthalene, 2-hydroxynaphthalene, naphthalene-1,2-diol, naphthalene-1,4-diol, 1,2-naphthalenedione, 1,4-naphthoquinone | 1-hydroxy-2-glutathione-1,2-dihydronaphthalene, 1-glutathione-2-hydroxy-1,2-dihydronaphthalene, 2-hydroxynaphthaleneglucuronide, 1-hydroxynaphthaleneglucuronide, 2-hydroxynaphthalene-sulfate, 1-hydroxynaphthalene-sulfate | [ |
Fluorene | LPAHs | 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene | hydroxyfluorene sulfate, 3 isomers of hydroxyfluorene glucuronide | [ |
Phenanthrene | LPAHs | phenanthrene-1,2-oxide, 2-hydroxyphenanthrene, 1-hydroxyphenanthrene, 1,2-diol-phenanthrene, phenanthrene-(1R,2S)-diol-(3S,4R)-epoxide, (1R,2S,3R,4S)- phenanthrene-tetrol, phenanthrene-9,10-oxide, phenanthrene-9,10-diol, 9-hydroxyphenanthrene, 3,4-phenanthrene-oxide, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, phenanthrene-3,4-diol, phenanthrene-(3S,4R)-diol-(1R,2S)-epoxide, (1R,2R,3S,4R)-phenanthrene-tetrol | hydroxyphenanthrene-glucuronide, 2-hydroxyphenanthrene-sulfate, 2 isomers of phenanthrene-dihydrodiol-glycine | [ |
Anthracene | LPAHs | anthracene-l,2-oxide, anthracene-1,2-dihydrodiol | [ | |
Fluoranthene | LPAHs | anti-2,3-dihydroxy-1,10b-epoxy-1,2,3-trihydrofluoranthene | [ | |
1-Nitropyrene | NPAHs | 1-nitropyrene-4,5-oxide, 1-nitropyrene-9,10-oxide, 1-nitropyrene-4,5-dihydrodiol, 1-nitropyrene-9,10-dihydrodiol, 1-nitrosopyrene, N-hydroxy-1-aminopyrene, 1-aminopyrene, N-acetyl-1-aminopyrene, 8-(deoxyguanosin-N2-yl)-1-aminopyrene, (N-deoxyguanosin-8-yl)-1-aminopyrene | 4-(glutathione-S-yl)-5-hydroxy-4,5-dihydro-1-nitropyrene, 5-(glutathione-S-yl)-4-hydroxy-4,5-dihydro-1-nitropyrene, 9-(glutathione-S-yl)-10-hydroxy-9,10-dihydro-1-nitropyrene, 10-(glutathione-S-yl)-9-hydroxy-9,10-dihydro-1-nitropyrene | [ |
1-Nitrobenzo[a]pyrene | NPAHs | 1-nitrobenzo[a]pyrene-7,8-epoxide, 1-nitrobenzo[a]pyrene-7,8-diol, 1-nitro-trans-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, N-hydroxy-1-aminobenzo[a]pyrene, 1-aminobenzo[a]pyrene | [ | |
1,6-Dinitropyrene | NPAHs | 1-amino-6-nitropyrene, 1-nitro-6-nitrosopyrene, N-(deoxyguanosin-8-yl)-1-amino-nitropyrene | [ | |
1,8-Dinitropyrene | NPAHs | 1-nitroso-8-nitropyrene, N-hydroxy-1-amino-8-nitropyrene, 1-amino-8-nitropyrene, N-acetoxy-1-amino-8-nitropyrene, N-(deoxyguanosin-8-yl)-1-amino-8-nitropyrene | [ | |
2-Nitrofluorene | NPAHs | N-hydroxy-2-aminofluorene, N-hydroxy-2-acetylaminofluorene, N-deoxyguanosin-8-yl-2-aminofluorene | [ | |
3-Nitrofluoranthene | NPAHs | N-hydroxy-3-aminofluoranthene, N-(deoxyguanosin-8-yl)-3-aminofluoranthene | [ | |
3-Nitrobenzanthrone | NPAHs | 3-aminobenzanthrone, N-acetyl-N-hydroxy-3-aminobenzanthrone, N-acetoxy-N-acetyl-3-aminobenzanthrone, N-hydroxy-3-aminobenzanthrone, N-acetoxy arylamines, N-sulfooxy arylamines, electrophilic nitrenium ions, 8-(3-amino-7H-benz[de]anthracen-7-one-2-yl)-2′-deoxyguanosine, 8-(3-amino-7H-benz[de]anthracen-7-one-N-yl)-2′-deoxyguanosine, N2-(3-amino-7H-benz[de]anthracen-7-one-2-yl)-2′-deoxyguanosine | [ | |
5-Nitroacenaphthene | NPAHs | 1-hydroxy-5-nitroacenaphthene, 1-hydroxy-5-aminoacenaphthene, 1-keto-5-nitroacenaphthene, 1-keto-5-aminoacenaphthene | [ | |
6-Nitrochrysene | NPAHs | trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene, trans-1,2-dihydro-1,2-dihydroxy-6-aminochrysene, trans-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-aminochrysene, 6-nitrosochrysene, N-hydroxy-6-aminochrysene, 5-(deoxyguanosin-N2-yl)-6-aminochrysene, N-(deoxyguanosin-8-yl)-6-aminochrysene, N-(deoxyinosin-8-yl)-6-aminochrysene | [ | |
7-Nitrobenzo[a]anthracene | NPAHs | 7-nitrobenz[a]anthracene-trans-3,4-epoxide, 7-nitrobenz[a]anthracene-trans-8,9-epoxide, 7-nitrobenz[a]anthracene-trans-3,4-dihydrodiol, 7-nitrobenz[a]anthracene-trans-3,4-dihydrodiol-1,2-epoxide, 7-nitrobenz[a]anthracene-1,2,3,4-tetrahydrotetrol, 7-nitrobenz[a]anthracene-trans-8,9-dihydrodiol | [ | |
1-Methylpyrene | APAHs | 1-hydroxymethylpyrene, N6-(1-methylpyrenyl)-2′-deoxyadenosine, N2-(1-methylpyrenyl)-2′-deoxyguanosine | 1-sulfoxymethylpyrene, cleavage of 1-sulfoxymethylpyrene to electrophilic positive carbon ions | [ |
7,12-Dimethylbenz[a]anthracene | APAHs | 7-hydroxymethyl-12-methylbenz[a]anthracene, 7-methyl-12-hydroxymethylbenz[a]anthracene | 7-methyl-12-sulfooxymethylbenz[a]anthracene, 7-sulfooxymethyl-12-methylbenz[a]anthracene | [ |
9,10-Phenanthrenequinone | OPAHs | 9,10-dihydroxyphenanthrene | 9,10-dihydroxyphenanthrene monoglucuronide, 9,10-dihydroxyphenanthrene monosulfonated | [ |
表 1 PAHs及其衍生物的体内代谢研究现状
Table 1 Current status of in vivo metabolism studies of PAHs and their derivatives
Compound | Categories | Phase Ⅰ metabolites | Phase Ⅱ metabolites | Refs. |
---|---|---|---|---|
Pyrene | HPAHs | 1-hydroxypyrene, 1,6-dihydroxypyrene, 1,8-dihydroxypyrene, pyrene-1,6-quinone, pyrene-1,8-quinone | 2 isomers of hydroxypyrene glucuronide | [ |
Benzo[a]anthracene | HPAHs | benzo[a]anthracene-3,4-dihydrodiol, anti-benzo[a]anthracene-3,4-dihydrodiol-1,2-epoxide, benzo[a]anthracene-3,4-catechol, benzo[a]anthracene-3,4-orthoquinone | [ | |
Benzo[a]pyrene | HPAHs | benzo[a]pyrene radical-cation, 8-(benzo[a]pyrene-6-yl)-guanine, 7-(benzo[a]pyrene-6-yl)-adenine, 7-(benzo[a]pyrene-6-yl)-guanine, benzo[a]pyrene-2,3-oxide, 3-hydroxybenzo[a]pyrene, benzo[a]pyrene-7,8-oxide, benzo[a]pyrene-catechol, trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, r7,t8,t9-trihydroxy-c-10-(N2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene, benzo[a]pyrene tetrol, benzo[a]pyrene-7,8-quinone, 10-(N2-deoxyguanosyl)-9,10-dihydro-9-hydroxybenzo[a]pyrene-7,8-dione* | [ | |
Dibenzo[a,h]anthracene | HPAHs | 3,4-arene oxide enantiomers of dibenz[a,h]anthracene, trans-dibenz[a,h]anthracene-3,4-dihydrodiol, dibenz[a,h]anthracene-3,4-diol-1,2-epoxide | [ | |
Dibenzo[def,p]chrysene | HPAHs | dibenzo[def,p]chrysene radical cation, dibenzo[def,p]chrysene-11,12-epoxide, 2 isomers of dibenzo[def,p]chrysene-trans-11,12-dihydrodiol, 4 isomers of dibenzo[def,p]chrysene-trans-11,12-dihydrodiol-13,14-epoxide, 4 isomers of dibenzo[def,p]chrysene-11,12,13,14-tetrahydrotetraol, dibenzo[def,p]chrysene-11,12-catechol, dibenzo[def,p]chrysene-11,12-semiquinone, dibenzo[def,p]chrysene-11,12-quinone | [ | |
Naphthalene | LPAHs | naphthalene-1,2-oxide, 1,2-dihydronaphthalene-1,2-diol, 1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydronaphthalene, 1-hydroxynaphthalene, 2-hydroxynaphthalene, naphthalene-1,2-diol, naphthalene-1,4-diol, 1,2-naphthalenedione, 1,4-naphthoquinone | 1-hydroxy-2-glutathione-1,2-dihydronaphthalene, 1-glutathione-2-hydroxy-1,2-dihydronaphthalene, 2-hydroxynaphthaleneglucuronide, 1-hydroxynaphthaleneglucuronide, 2-hydroxynaphthalene-sulfate, 1-hydroxynaphthalene-sulfate | [ |
Fluorene | LPAHs | 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene | hydroxyfluorene sulfate, 3 isomers of hydroxyfluorene glucuronide | [ |
Phenanthrene | LPAHs | phenanthrene-1,2-oxide, 2-hydroxyphenanthrene, 1-hydroxyphenanthrene, 1,2-diol-phenanthrene, phenanthrene-(1R,2S)-diol-(3S,4R)-epoxide, (1R,2S,3R,4S)- phenanthrene-tetrol, phenanthrene-9,10-oxide, phenanthrene-9,10-diol, 9-hydroxyphenanthrene, 3,4-phenanthrene-oxide, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, phenanthrene-3,4-diol, phenanthrene-(3S,4R)-diol-(1R,2S)-epoxide, (1R,2R,3S,4R)-phenanthrene-tetrol | hydroxyphenanthrene-glucuronide, 2-hydroxyphenanthrene-sulfate, 2 isomers of phenanthrene-dihydrodiol-glycine | [ |
Anthracene | LPAHs | anthracene-l,2-oxide, anthracene-1,2-dihydrodiol | [ | |
Fluoranthene | LPAHs | anti-2,3-dihydroxy-1,10b-epoxy-1,2,3-trihydrofluoranthene | [ | |
1-Nitropyrene | NPAHs | 1-nitropyrene-4,5-oxide, 1-nitropyrene-9,10-oxide, 1-nitropyrene-4,5-dihydrodiol, 1-nitropyrene-9,10-dihydrodiol, 1-nitrosopyrene, N-hydroxy-1-aminopyrene, 1-aminopyrene, N-acetyl-1-aminopyrene, 8-(deoxyguanosin-N2-yl)-1-aminopyrene, (N-deoxyguanosin-8-yl)-1-aminopyrene | 4-(glutathione-S-yl)-5-hydroxy-4,5-dihydro-1-nitropyrene, 5-(glutathione-S-yl)-4-hydroxy-4,5-dihydro-1-nitropyrene, 9-(glutathione-S-yl)-10-hydroxy-9,10-dihydro-1-nitropyrene, 10-(glutathione-S-yl)-9-hydroxy-9,10-dihydro-1-nitropyrene | [ |
1-Nitrobenzo[a]pyrene | NPAHs | 1-nitrobenzo[a]pyrene-7,8-epoxide, 1-nitrobenzo[a]pyrene-7,8-diol, 1-nitro-trans-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, N-hydroxy-1-aminobenzo[a]pyrene, 1-aminobenzo[a]pyrene | [ | |
1,6-Dinitropyrene | NPAHs | 1-amino-6-nitropyrene, 1-nitro-6-nitrosopyrene, N-(deoxyguanosin-8-yl)-1-amino-nitropyrene | [ | |
1,8-Dinitropyrene | NPAHs | 1-nitroso-8-nitropyrene, N-hydroxy-1-amino-8-nitropyrene, 1-amino-8-nitropyrene, N-acetoxy-1-amino-8-nitropyrene, N-(deoxyguanosin-8-yl)-1-amino-8-nitropyrene | [ | |
2-Nitrofluorene | NPAHs | N-hydroxy-2-aminofluorene, N-hydroxy-2-acetylaminofluorene, N-deoxyguanosin-8-yl-2-aminofluorene | [ | |
3-Nitrofluoranthene | NPAHs | N-hydroxy-3-aminofluoranthene, N-(deoxyguanosin-8-yl)-3-aminofluoranthene | [ | |
3-Nitrobenzanthrone | NPAHs | 3-aminobenzanthrone, N-acetyl-N-hydroxy-3-aminobenzanthrone, N-acetoxy-N-acetyl-3-aminobenzanthrone, N-hydroxy-3-aminobenzanthrone, N-acetoxy arylamines, N-sulfooxy arylamines, electrophilic nitrenium ions, 8-(3-amino-7H-benz[de]anthracen-7-one-2-yl)-2′-deoxyguanosine, 8-(3-amino-7H-benz[de]anthracen-7-one-N-yl)-2′-deoxyguanosine, N2-(3-amino-7H-benz[de]anthracen-7-one-2-yl)-2′-deoxyguanosine | [ | |
5-Nitroacenaphthene | NPAHs | 1-hydroxy-5-nitroacenaphthene, 1-hydroxy-5-aminoacenaphthene, 1-keto-5-nitroacenaphthene, 1-keto-5-aminoacenaphthene | [ | |
6-Nitrochrysene | NPAHs | trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene, trans-1,2-dihydro-1,2-dihydroxy-6-aminochrysene, trans-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-aminochrysene, 6-nitrosochrysene, N-hydroxy-6-aminochrysene, 5-(deoxyguanosin-N2-yl)-6-aminochrysene, N-(deoxyguanosin-8-yl)-6-aminochrysene, N-(deoxyinosin-8-yl)-6-aminochrysene | [ | |
7-Nitrobenzo[a]anthracene | NPAHs | 7-nitrobenz[a]anthracene-trans-3,4-epoxide, 7-nitrobenz[a]anthracene-trans-8,9-epoxide, 7-nitrobenz[a]anthracene-trans-3,4-dihydrodiol, 7-nitrobenz[a]anthracene-trans-3,4-dihydrodiol-1,2-epoxide, 7-nitrobenz[a]anthracene-1,2,3,4-tetrahydrotetrol, 7-nitrobenz[a]anthracene-trans-8,9-dihydrodiol | [ | |
1-Methylpyrene | APAHs | 1-hydroxymethylpyrene, N6-(1-methylpyrenyl)-2′-deoxyadenosine, N2-(1-methylpyrenyl)-2′-deoxyguanosine | 1-sulfoxymethylpyrene, cleavage of 1-sulfoxymethylpyrene to electrophilic positive carbon ions | [ |
7,12-Dimethylbenz[a]anthracene | APAHs | 7-hydroxymethyl-12-methylbenz[a]anthracene, 7-methyl-12-hydroxymethylbenz[a]anthracene | 7-methyl-12-sulfooxymethylbenz[a]anthracene, 7-sulfooxymethyl-12-methylbenz[a]anthracene | [ |
9,10-Phenanthrenequinone | OPAHs | 9,10-dihydroxyphenanthrene | 9,10-dihydroxyphenanthrene monoglucuronide, 9,10-dihydroxyphenanthrene monosulfonated | [ |
Parameter | Newborn | 1 year | 5 years | 10 years | 15 years | Adult (30 years) |
---|---|---|---|---|---|---|
Body weight (kg) | 3.5 | 10.0 | 19.0 | 32 | 56 | 73 |
Alveolar ventilation rate, QP (L/h) | 90.0 | 150.0 | 240.0 | 310 | 420 | 450 |
Cardiac output, QC (L/h) | 35.4 | 90.0 | 192.0 | 264 | 354 | 366 |
Blood volume, VB (L) | 0.3 | 0.5 | 1.4 | 2.4 | 4.5 | 5.3 |
Blood flow (L/h) | ||||||
Skin, QSK | 1.80 | 3.60 | 10.20 | 15.0 | 18.9 | 19.50 |
Adipose, QAD | 1.80 | 3.60 | 10.26 | 15.0 | 18.9 | 19.50 |
Kidney, QK | 6.60 | 13.80 | 34.62 | 51.2 | 80.1 | 79.50 |
Liver, QL | 2.34 | 4.68 | 13.26 | 19.5 | 24.5 | 25.38 |
Rapidly perfusion tissues, QRP | 15.84 | 44.52 | 86.52 | 114.1 | 143.2 | 151.32 |
Slowly perfusion tissues, QSP | 7.02 | 22.68 | 37.14 | 49.2 | 68.4 | 70.80 |
Tissue volumes (L) | ||||||
Skin, VSK | 0.18 | 0.35 | 0.57 | 0.82 | 2.000 | 3.300 |
Adipose, VAD | 0.93 | 3.80 | 5.50 | 8.60 | 12.00 | 18.20 |
Kidney, VK | 0.03 | 0.07 | 0.11 | 0.18 | 0.250 | 0.310 |
Lung, VLU | 0.03 | 0.08 | 0.13 | 0.21 | 0.330 | 0.500 |
Liver, VL | 0.13 | 0.33 | 0.57 | 0.83 | 1.300 | 1.800 |
Slowly perfusion tissues, VSP | 1.25 | 2.59 | 6.74 | 12.15 | 23.744 | 27.702 |
表 2 不同年龄段的生理参数值[71?73]
Table 2 Values of physiological parameters at different ages[71?73]
Parameter | Newborn | 1 year | 5 years | 10 years | 15 years | Adult (30 years) |
---|---|---|---|---|---|---|
Body weight (kg) | 3.5 | 10.0 | 19.0 | 32 | 56 | 73 |
Alveolar ventilation rate, QP (L/h) | 90.0 | 150.0 | 240.0 | 310 | 420 | 450 |
Cardiac output, QC (L/h) | 35.4 | 90.0 | 192.0 | 264 | 354 | 366 |
Blood volume, VB (L) | 0.3 | 0.5 | 1.4 | 2.4 | 4.5 | 5.3 |
Blood flow (L/h) | ||||||
Skin, QSK | 1.80 | 3.60 | 10.20 | 15.0 | 18.9 | 19.50 |
Adipose, QAD | 1.80 | 3.60 | 10.26 | 15.0 | 18.9 | 19.50 |
Kidney, QK | 6.60 | 13.80 | 34.62 | 51.2 | 80.1 | 79.50 |
Liver, QL | 2.34 | 4.68 | 13.26 | 19.5 | 24.5 | 25.38 |
Rapidly perfusion tissues, QRP | 15.84 | 44.52 | 86.52 | 114.1 | 143.2 | 151.32 |
Slowly perfusion tissues, QSP | 7.02 | 22.68 | 37.14 | 49.2 | 68.4 | 70.80 |
Tissue volumes (L) | ||||||
Skin, VSK | 0.18 | 0.35 | 0.57 | 0.82 | 2.000 | 3.300 |
Adipose, VAD | 0.93 | 3.80 | 5.50 | 8.60 | 12.00 | 18.20 |
Kidney, VK | 0.03 | 0.07 | 0.11 | 0.18 | 0.250 | 0.310 |
Lung, VLU | 0.03 | 0.08 | 0.13 | 0.21 | 0.330 | 0.500 |
Liver, VL | 0.13 | 0.33 | 0.57 | 0.83 | 1.300 | 1.800 |
Slowly perfusion tissues, VSP | 1.25 | 2.59 | 6.74 | 12.15 | 23.744 | 27.702 |
Parameter | BaP | 3-BaP | NAP | DBC |
---|---|---|---|---|
Partition coefficients | ||||
Blood/air, Pab | 590.00 | - | 10.3 | - |
Lung, Plu | 1.37 | 2.92 | - | 1.13 |
Adipose, Pad | 142.00 | 1.42 | 25.6 | 158.33 |
Skin, Psk | 5.31 | 0.80 | 2.8 | - |
Kidney, Pki | 8.98 | 40.4 | - | - |
Liver, Pli | 8.39 | 1.83 | - | 9.38 |
Rapid perfusion, Pra | 12.47 | 3.35 | - | 10.37 |
Slow perfusion, Psl | 7.36 | 0.56 | - | 7.49 |
Metabolic constants | ||||
Maximum metabolic rate per kilogram of tissue, Vmax (µmol/h) | 705.8 | - | - | - |
Michaelis constant, Km (µmol/L) | 5.5 | - | - | - |
Vmax/Km (L/h) | - | 37.13 | 698 | - |
Fraction of hydroxy metabolites, f | 0.185 | - | - | - |
Elimination rates (1/h) | ||||
Biliary, Klgi (from liver to gastrointestinal tract) | 0.042 | 0.042 | - | - |
Kgil (from gastrointestinal tract to liver) | - | 0.007 | - | - |
Urine, Kkb (from kidney to bladder) | 7.500 | 7.500 | - | - |
Ku (from bladder to urine) | 0.009 | 0.009 | - | - |
Fecal, Kf | 0.334 | 0.173 | - | - |
Skin permeation parameters | ||||
Thickness of the stratum corneum, Tc (µm) | - | - | 10 | - |
Total body surface areag, SURFA (cm2) | - | - | 19238 | - |
Permeability coefficient for stratum corneum, Kps (cm/h) | - | - | 6.8×10-5 | - |
Permeability coefficient for viable epidermis, Kpv (cm/h) | - | - | 3.0×10-3 | - |
表 3 所有年龄段不同组织/器官的人体生理药代动力学模型参数[71?73]
Table 3 Parameters of physiologically-based pharmacokinetic model for each tissue/organ of all ages[71?73]
Parameter | BaP | 3-BaP | NAP | DBC |
---|---|---|---|---|
Partition coefficients | ||||
Blood/air, Pab | 590.00 | - | 10.3 | - |
Lung, Plu | 1.37 | 2.92 | - | 1.13 |
Adipose, Pad | 142.00 | 1.42 | 25.6 | 158.33 |
Skin, Psk | 5.31 | 0.80 | 2.8 | - |
Kidney, Pki | 8.98 | 40.4 | - | - |
Liver, Pli | 8.39 | 1.83 | - | 9.38 |
Rapid perfusion, Pra | 12.47 | 3.35 | - | 10.37 |
Slow perfusion, Psl | 7.36 | 0.56 | - | 7.49 |
Metabolic constants | ||||
Maximum metabolic rate per kilogram of tissue, Vmax (µmol/h) | 705.8 | - | - | - |
Michaelis constant, Km (µmol/L) | 5.5 | - | - | - |
Vmax/Km (L/h) | - | 37.13 | 698 | - |
Fraction of hydroxy metabolites, f | 0.185 | - | - | - |
Elimination rates (1/h) | ||||
Biliary, Klgi (from liver to gastrointestinal tract) | 0.042 | 0.042 | - | - |
Kgil (from gastrointestinal tract to liver) | - | 0.007 | - | - |
Urine, Kkb (from kidney to bladder) | 7.500 | 7.500 | - | - |
Ku (from bladder to urine) | 0.009 | 0.009 | - | - |
Fecal, Kf | 0.334 | 0.173 | - | - |
Skin permeation parameters | ||||
Thickness of the stratum corneum, Tc (µm) | - | - | 10 | - |
Total body surface areag, SURFA (cm2) | - | - | 19238 | - |
Permeability coefficient for stratum corneum, Kps (cm/h) | - | - | 6.8×10-5 | - |
Permeability coefficient for viable epidermis, Kpv (cm/h) | - | - | 3.0×10-3 | - |
Subjects | Age/years | Exposure route | Exposure substances | Kinetics data analysis methods | Sample type | Metabolic characterization | Ref. |
---|---|---|---|---|---|---|---|
9 adults | >18 | ingestion | NAP, FLU, PHEN, PYR, and FRT | nonlinear mixed- effects model | urine | within 24 h; The parent PAHs, naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene made up 0, 14%, 42%, 100%, and 56%, respectively, of the total PAH+hydroxy-PAH concentration measured in urine. | [ |
9 adults | 23-61 | ingestion | NAP, FLU, PHEN, and PYR | nonlinear mixed- effects model | urine | Mean percentage of PYR excreted as 1-PYR in urine over 24 h was 6.8% (range 4.5%‒14.6%). For NAP, FLU, and PHEN, the mean percentages of their excreted hydroxylated metabolites (sum of the metabolites from the same PAH) were 182% (99%‒248%), 60% (30%‒73%), and 11% (7.5%‒16%), respectively. | [ |
9 adults | 20-65 | ingestion | 14C-DBC | non-compartmental model | urine | Total urinary excretion of 14C-DBC at 72 h was 1.24%±0.49% of the total oral dose. | [ |
6 adults | 20-65 | ingestion | 14C-DBC | pharmacokinetic model | urine and plasma | 14C-(+/‒)-DBC-11,12-diol was the major metabolite in plasma. 14C-(+/‒)-DBC-tetrol was the major metabolite in urine, of which 88.7%±6.5% was present in conjugated form. | [ |
7 adults | 26-65 | ingestion | 14C-BaP | non-compartmental model and compartmental model | plasma | The metabolites with the highest yield were BaP-tetrols (specific stereoisomers unknown) and dihydrodiols (7,8- and 9,10- with perhaps some 4,5-dihydrodiol). | [ |
8 adults | 26-41 | ingestion | NAP-d8, FLU-d10, PHEN-d10, and PYR-d10 | non-compartmental model | urine | The means of 72 h fractional urinary excretion for each metabolite are as follows: 1.14%, 0.63%, 8.24%, 1.03%, 0.84%, 0.72%, 1.07%, 0.07%, 0.58%, and 11.3% for 1-, 2-NAP-d7, 2-, 3-FLU-d9, 1-, 2-, 3-, 4-, 9-PHEN-d9, 1-PYR-d9, respectively. | [ |
6 adults | 20-65 | ingestion | 14C-DBC | PBPK model | urine and plasma | A smaller proportion of DBC gets eliminated via Phase I than Phase Ⅱ route (54% vs. 30%). | [ |
Human liver microsomes | - | in vitro | BaP and DBC | PBPK model | - | The intrinsic clearance of BaP is nearly five-fold faster than that of DBC. | [ |
Human liver microsomes | - | in vitro | DBC | linear regression model and Michaelis-Menten equation | - | The metabolism rate of phase Ⅰ DBC-11,12-diol was 1.7-fold higher than that of DBC. | [ |
表 4 PAHs在人体内的代谢特征
Table 4 Metabolic characteristics of PAHs in human body
Subjects | Age/years | Exposure route | Exposure substances | Kinetics data analysis methods | Sample type | Metabolic characterization | Ref. |
---|---|---|---|---|---|---|---|
9 adults | >18 | ingestion | NAP, FLU, PHEN, PYR, and FRT | nonlinear mixed- effects model | urine | within 24 h; The parent PAHs, naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene made up 0, 14%, 42%, 100%, and 56%, respectively, of the total PAH+hydroxy-PAH concentration measured in urine. | [ |
9 adults | 23-61 | ingestion | NAP, FLU, PHEN, and PYR | nonlinear mixed- effects model | urine | Mean percentage of PYR excreted as 1-PYR in urine over 24 h was 6.8% (range 4.5%‒14.6%). For NAP, FLU, and PHEN, the mean percentages of their excreted hydroxylated metabolites (sum of the metabolites from the same PAH) were 182% (99%‒248%), 60% (30%‒73%), and 11% (7.5%‒16%), respectively. | [ |
9 adults | 20-65 | ingestion | 14C-DBC | non-compartmental model | urine | Total urinary excretion of 14C-DBC at 72 h was 1.24%±0.49% of the total oral dose. | [ |
6 adults | 20-65 | ingestion | 14C-DBC | pharmacokinetic model | urine and plasma | 14C-(+/‒)-DBC-11,12-diol was the major metabolite in plasma. 14C-(+/‒)-DBC-tetrol was the major metabolite in urine, of which 88.7%±6.5% was present in conjugated form. | [ |
7 adults | 26-65 | ingestion | 14C-BaP | non-compartmental model and compartmental model | plasma | The metabolites with the highest yield were BaP-tetrols (specific stereoisomers unknown) and dihydrodiols (7,8- and 9,10- with perhaps some 4,5-dihydrodiol). | [ |
8 adults | 26-41 | ingestion | NAP-d8, FLU-d10, PHEN-d10, and PYR-d10 | non-compartmental model | urine | The means of 72 h fractional urinary excretion for each metabolite are as follows: 1.14%, 0.63%, 8.24%, 1.03%, 0.84%, 0.72%, 1.07%, 0.07%, 0.58%, and 11.3% for 1-, 2-NAP-d7, 2-, 3-FLU-d9, 1-, 2-, 3-, 4-, 9-PHEN-d9, 1-PYR-d9, respectively. | [ |
6 adults | 20-65 | ingestion | 14C-DBC | PBPK model | urine and plasma | A smaller proportion of DBC gets eliminated via Phase I than Phase Ⅱ route (54% vs. 30%). | [ |
Human liver microsomes | - | in vitro | BaP and DBC | PBPK model | - | The intrinsic clearance of BaP is nearly five-fold faster than that of DBC. | [ |
Human liver microsomes | - | in vitro | DBC | linear regression model and Michaelis-Menten equation | - | The metabolism rate of phase Ⅰ DBC-11,12-diol was 1.7-fold higher than that of DBC. | [ |
|
[1] | 骆娅娜, 陈珈, 胡宇宇, 高世杰, 王艳丽, 刘艳明, 冯娟娟, 孙敏. 磁增强管内固相微萃取的材料制备及应用进展[J]. 色谱, 2025, 43(6): 606-619. |
[2] | 付慧, 陆一夫, 谢琳娜, 朱英, 李峥, 胡小键. 城市居民单羟基多环芳烃暴露特征与影响因素分析[J]. 色谱, 2025, 43(6): 670-677. |
[3] | 王朝旭, 王端达, 王树涛, 宋永杨. 有序多孔材料在色谱分离分析领域的应用[J]. 色谱, 2025, 43(6): 594-605. |
[4] | 杨艳伟, 张续, 林潇, 孙琦, 付慧, 陆一夫, 邱天, 张卓娜, 谢琳娜, 张海婧, 张淼, 胡小键, 曲英莉, 赵峰, 吕跃斌, 朱英, 施小明. 国家人体生物监测项目中化学污染物靶向定量分析的实验室质量控制策略[J]. 色谱, 2025, 43(6): 559-570. |
[5] | 包得军, 冯壮壮, 张续, 孙琦, 张卓娜, 胡小键, 朱英, 林潇. 超高效液相色谱-串联质谱法测定人血清中22种有机紫外吸收剂[J]. 色谱, 2025, 43(6): 620-629. |
[6] | 赵小英, 康慧, 王燕燕, 李文慧, 陈铭, 可婵, 秦峰, 康熙雄. 超高效液相色谱-串联质谱同时测定尿液中10种邻苯二甲酸酯代谢物[J]. 色谱, 2025, 43(6): 640-649. |
[7] | 张伟亚, 陈品, 解伟欣, 高儇博, 张万峰, 代威, 林思源, 朱书奎. 基于全二维气相色谱-飞行时间质谱指纹图谱的原油溯源[J]. 色谱, 2025, 43(6): 688-695. |
[8] | 黄雨霞, 王海燕, 张屹涵, 蔺奕菲, 乔晓强, 胡良海. 外泌体在生物标志物研究领域的文献计量学分析[J]. 色谱, 2025, 43(5): 498-507. |
[9] | 卜彩婷, 竺雪冬, 张倩颖, 邵文亚. 外泌体在神经退行性疾病中的作用研究进展[J]. 色谱, 2025, 43(5): 487-497. |
[10] | 苏雅婷, 钱小红, 秦伟捷. 脂质体与外泌体在药物递送和生物标志物筛选中的研究进展[J]. 色谱, 2025, 43(5): 472-486. |
[11] | 卜爱香, 武光耀, 胡良海. 单细胞与单颗粒外泌体分离分析进展与展望[J]. 色谱, 2025, 43(5): 399-412. |
[12] | 王海燕, 谢沛涓, 乔晓强, 张丽媛. 基于亲和作用力的外泌体高效分离方法的经典策略和研究进展[J]. 色谱, 2025, 43(5): 413-423. |
[13] | 冯壮壮, 林潇, 包得军, 胡小键, 张海婧, 朱英, 张续. 固相萃取-超高效液相色谱-串联质谱法测定人尿液中4种氧化应激生物标志物[J]. 色谱, 2025, 43(4): 317-325. |
[14] | 胡洋洋, 杨歌, 屈锋. 小分子靶标的非固定化核酸适配体筛选技术研究进展[J]. 色谱, 2025, 43(4): 297-308. |
[15] | 郭露露, 张辰, 黄延俊, 刘兴余, 刘德水, 龙腾, 孙晋浩, 刘绍锋, 李中皓, 王加忠, 毛健. 基于代谢组学和质谱成像法考察烟碱暴露对小鼠脑内内源性代谢物的影响[J]. 色谱, 2025, 43(4): 363-371. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 475
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||