Chinese Journal of Chromatography ›› 2021, Vol. 39 ›› Issue (3): 229-240.DOI: 10.3724/SP.J.1123.2020.05030
• Reviews • Previous Articles Next Articles
LI Ziling, LI Na, ZHAO Tengwen, ZHANG Ziyang, WANG Manman*()
Received:
2020-05-28
Online:
2021-03-08
Published:
2021-02-03
Contact:
WANG Manman
Supported by:
Fig. 1 Schematic diagram of nanomaterials incorporated monolithic columns and their application in sample preparation SPME: solid phase microextraction; SBSE: stir bar sorption extraction.
Fig. 2 Flow-chart of solid phase extraction of glutathione from urine using poly(Au-GMA-co-EDMA) incorporated monolithic syringe GMA: glycidyl methacrylate; EDMA: ethylene glycol dimethacrylate.
Fig. 5 Scheme of functionalization of poly(GMA-co-EDMA) in syringe with (a) ammonia, (b) cysteamine and (c) cystamine, and subsequently immobilization with gold nanoparticles[35]
Fig. 6 (a) Fabrication process of poly(GO-EDMA) incor-porated monolithic syringe and (b) flow-chart of SPE of hydroxylated polycyclic aromatic hydrocarbons from urine using poly(GO-EDMA) incorporated monolithic syringe[70]
Comonomer system | Nanomaterial | Initiation | Pretreatment mode | Sample | Analyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
GMA/EDMA | MWCNT | UV/30 min | SPME | urine | antidepressants | 18 | |||||
St/EDMA | MWCNT | 30 ℃/3 h | on-line SPE | medicinal plants | ursolic acid | 19 | |||||
MAA/EDMA | MWCNT | AIBN/60 ℃/24 h | SPME | cosmetic and personal care products | parabens | 20 | |||||
BzMA/EDMA | CNT | AIBN/70 ℃/20 h | SPE | water | polycyclic aromatic hydrocar- bons | 69 | |||||
GMA/EDMA | carbon nanohorns | UV | SPE | urine | non-steroidal anti-inflammatory drugs | 74 | |||||
BMA/EDMA | G | AIBN/60 ℃/48 h | SPME | cosmetic | glucocorticoids | 23 | |||||
Comonomer system | Nanomaterial | Initiation | Pretreatment mode | Sample | Analyte | Ref. | |||||
VP/EDMA | G | AIBN/70 ℃/12 h | SPME | water and rice | phenoxyacetic acid herbicides | 24 | |||||
GMA/EDMA | GO | AIBN/60 ℃ | SPME | urine | sarcosine | 27 | |||||
MAA/EDMA | GO | AIBN/65 ℃/24 h | SPME | environmental water | carbamate insecticides | 28 | |||||
EDMA | GO | AIBN/60 ℃/30 h | on-line SPE | milk and chicken muscle | sulfonamides | 29 | |||||
EDMA | GO | AIBN/65 ℃/25 h | SPE | urine | hydroxyl polycyclic aromatic hydrocarbons | 70 | |||||
C8/TEGDA | GO | 30 ℃/2.5 h | on-line SPE | edible oil | β-sitosterol | 83 | |||||
BMA/EDMA | AC | AIBN/microwave/900 W/5 min | SPME | drinking water | phthalate esters | 32 | |||||
BMA/EDMA | AC | AIBN/microwave/900 W/5 min | SPME | fruit wine and cranberry juice | phenolic acid | 33 | |||||
GMA-EDMA | AuNPs | UV/10 min | SPE | saliva and urine | glutathione | 35 | |||||
GMA-EDMA | AuNPs | AIBN/60 ℃/24 h | SPME | blood plasma | glutathione | 62 | |||||
UF | AgNPs | 70 ℃/10 min | SPME | french fries | monounsaturated fatty acid methyl esters | 36 | |||||
MAA-GMA/ EDMA | In2O3 | AIBN/60 ℃/20 h | SPME | food | synthetic colorants | 38 | |||||
MAA/EDMA | ZnO | AIBN/60 ℃/24 h | SPME | environmental water | fluoroquinolone antibiotics | 39 | |||||
NIPAAm/ GMA/EDMA | γ-Al2O3 | 65 ℃/16 h | PMME | red wine | sudan | 41 | |||||
MAA/EDMA | γ-Al3O4 | AIBN/UV/3 h | SPME | chlorzoxazone tablets | 2-amino-4-chlorophenol | 58 | |||||
BMA/EDMA | MIL-53 (Al) | AIBN/60 ℃/12 h | SPME | water and urine | non-steroidal anti-inflammatory drugs | 45 | |||||
NMA/EDMA | MOF-199 (Al) | 30 ℃/3.5 h | on-line SPE | Chinese herbal medicine | ursolic acid | 46 | |||||
BMA/EDMA | MIL-101 (Cr) | AIBN/microwave/900 W/5 min | SPME | river water | penicillin | 47 | |||||
St/DVB/MAA | MIL-53 (Al) | AIBN/70 ℃/24 h | on-line SPME | urine | estrogens | 59 | |||||
GMA/EDMA | MIL-101 (Cr) | UV | SPME | urine | nonsteroidal anti-inflammatory drugs | 60 | |||||
BMA-EDMA | MIL-53 (Al) | AIBN/microwave/ 900 W/5 min | SPME | river water and milk | penicillins | 75 | |||||
MMA/EDMA | ZIF-8 | AIBN/60 ℃/24 h | SBSE | fruit | phytohormones | 78 | |||||
VP/EDMA | UiO-66 (Zr) | AIBN/55-60 ℃/ 3 days | SBSE | water and soil | sulfonylurea herbicides | 79 | |||||
GMA/EDMA | MIL-101 | AIBN/70 ℃/24 h | on-line SPE | environmental water | phenols | 82 | |||||
GMA/EDMA | COF | AIBN/60 ℃/20 h | SPME | urine and serum | benzophenones | 50 | |||||
St-divinyl/ GMA | COF | 120 ℃/72 h | SPE | environmental water | non-steroidal anti-inflammatory drugs | 51 | |||||
UF | HAP | 70 ℃/2 h | SPE | grass carp | adenosine triphosphate and its phosphorylated metabolites | 57 | |||||
EDMA | porous organic cage | AIBN/60 ℃/12 h | SPE | chenopodium quinoa willd | ecdysteroids | 71 | |||||
TEGDA | nanodiamond | 30 ℃/2.5 h | on-line SPE | edible oil | β-sitosterol | 84 |
Table 1 Preparation and application of nanomaterials incorporated polymeric monoliths
Comonomer system | Nanomaterial | Initiation | Pretreatment mode | Sample | Analyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
GMA/EDMA | MWCNT | UV/30 min | SPME | urine | antidepressants | 18 | |||||
St/EDMA | MWCNT | 30 ℃/3 h | on-line SPE | medicinal plants | ursolic acid | 19 | |||||
MAA/EDMA | MWCNT | AIBN/60 ℃/24 h | SPME | cosmetic and personal care products | parabens | 20 | |||||
BzMA/EDMA | CNT | AIBN/70 ℃/20 h | SPE | water | polycyclic aromatic hydrocar- bons | 69 | |||||
GMA/EDMA | carbon nanohorns | UV | SPE | urine | non-steroidal anti-inflammatory drugs | 74 | |||||
BMA/EDMA | G | AIBN/60 ℃/48 h | SPME | cosmetic | glucocorticoids | 23 | |||||
Comonomer system | Nanomaterial | Initiation | Pretreatment mode | Sample | Analyte | Ref. | |||||
VP/EDMA | G | AIBN/70 ℃/12 h | SPME | water and rice | phenoxyacetic acid herbicides | 24 | |||||
GMA/EDMA | GO | AIBN/60 ℃ | SPME | urine | sarcosine | 27 | |||||
MAA/EDMA | GO | AIBN/65 ℃/24 h | SPME | environmental water | carbamate insecticides | 28 | |||||
EDMA | GO | AIBN/60 ℃/30 h | on-line SPE | milk and chicken muscle | sulfonamides | 29 | |||||
EDMA | GO | AIBN/65 ℃/25 h | SPE | urine | hydroxyl polycyclic aromatic hydrocarbons | 70 | |||||
C8/TEGDA | GO | 30 ℃/2.5 h | on-line SPE | edible oil | β-sitosterol | 83 | |||||
BMA/EDMA | AC | AIBN/microwave/900 W/5 min | SPME | drinking water | phthalate esters | 32 | |||||
BMA/EDMA | AC | AIBN/microwave/900 W/5 min | SPME | fruit wine and cranberry juice | phenolic acid | 33 | |||||
GMA-EDMA | AuNPs | UV/10 min | SPE | saliva and urine | glutathione | 35 | |||||
GMA-EDMA | AuNPs | AIBN/60 ℃/24 h | SPME | blood plasma | glutathione | 62 | |||||
UF | AgNPs | 70 ℃/10 min | SPME | french fries | monounsaturated fatty acid methyl esters | 36 | |||||
MAA-GMA/ EDMA | In2O3 | AIBN/60 ℃/20 h | SPME | food | synthetic colorants | 38 | |||||
MAA/EDMA | ZnO | AIBN/60 ℃/24 h | SPME | environmental water | fluoroquinolone antibiotics | 39 | |||||
NIPAAm/ GMA/EDMA | γ-Al2O3 | 65 ℃/16 h | PMME | red wine | sudan | 41 | |||||
MAA/EDMA | γ-Al3O4 | AIBN/UV/3 h | SPME | chlorzoxazone tablets | 2-amino-4-chlorophenol | 58 | |||||
BMA/EDMA | MIL-53 (Al) | AIBN/60 ℃/12 h | SPME | water and urine | non-steroidal anti-inflammatory drugs | 45 | |||||
NMA/EDMA | MOF-199 (Al) | 30 ℃/3.5 h | on-line SPE | Chinese herbal medicine | ursolic acid | 46 | |||||
BMA/EDMA | MIL-101 (Cr) | AIBN/microwave/900 W/5 min | SPME | river water | penicillin | 47 | |||||
St/DVB/MAA | MIL-53 (Al) | AIBN/70 ℃/24 h | on-line SPME | urine | estrogens | 59 | |||||
GMA/EDMA | MIL-101 (Cr) | UV | SPME | urine | nonsteroidal anti-inflammatory drugs | 60 | |||||
BMA-EDMA | MIL-53 (Al) | AIBN/microwave/ 900 W/5 min | SPME | river water and milk | penicillins | 75 | |||||
MMA/EDMA | ZIF-8 | AIBN/60 ℃/24 h | SBSE | fruit | phytohormones | 78 | |||||
VP/EDMA | UiO-66 (Zr) | AIBN/55-60 ℃/ 3 days | SBSE | water and soil | sulfonylurea herbicides | 79 | |||||
GMA/EDMA | MIL-101 | AIBN/70 ℃/24 h | on-line SPE | environmental water | phenols | 82 | |||||
GMA/EDMA | COF | AIBN/60 ℃/20 h | SPME | urine and serum | benzophenones | 50 | |||||
St-divinyl/ GMA | COF | 120 ℃/72 h | SPE | environmental water | non-steroidal anti-inflammatory drugs | 51 | |||||
UF | HAP | 70 ℃/2 h | SPE | grass carp | adenosine triphosphate and its phosphorylated metabolites | 57 | |||||
EDMA | porous organic cage | AIBN/60 ℃/12 h | SPE | chenopodium quinoa willd | ecdysteroids | 71 | |||||
TEGDA | nanodiamond | 30 ℃/2.5 h | on-line SPE | edible oil | β-sitosterol | 84 |
|
[1] | ZHOU Ranfeng, ZHANG Huixian, YIN Xiaoli, PENG Xitian. Progress in the application of novel nano-materials to the safety analysis of agricultural products [J]. Chinese Journal of Chromatography, 2023, 41(9): 731-741. |
[2] | QU Jian, NI Yuwen, YU Haoran, TIAN Hongxu, WANG Longxing, CHEN Jiping. New pretreatment method for detecting petroleum hydrocarbons in soil: silica-gel dehydration and cyclohexane extraction [J]. Chinese Journal of Chromatography, 2023, 41(9): 814-820. |
[3] | GAO Yiyang, DING Yali, CHEN Luyu, DU Fang, XIN Xubo, FENG Juanjuan, SUN Mingxia, FENG Yang, SUN Min. Recent application advances of covalent organic frameworks for solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(7): 545-553. |
[4] | WANG Xuemei, HUANG Lixia, YUAN Na, HUANG Pengfei, DU Xinzhen, LU Xiaoquan. Progress in preparation of hollow nanomaterials and their application to sample pretreatment [J]. Chinese Journal of Chromatography, 2023, 41(6): 457-471. |
[5] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[6] | YE Hanzhang, LIU Tingting, DING Yongli, GU Jingjing, LI Yuhao, WANG Qi, ZHANG Zhan’en, WANG Xuedong. Recent advances in the development and application of effervescence-assisted microextraction techniques [J]. Chinese Journal of Chromatography, 2023, 41(4): 289-301. |
[7] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[8] | OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies [J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121. |
[9] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[10] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[11] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[12] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[13] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
[14] | JIANG Wenqian, CHEN Yumei, BI Wentao. Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(10): 901-910. |
[15] | YANG Han, TANG Wenqi, ZENG Chu, MENG Shasha, XU Ming. Rational design of high performance metal organic framework stationary phase for gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 853-865. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||