Chinese Journal of Chromatography ›› 2021, Vol. 39 ›› Issue (12): 1281-1290.DOI: 10.3724/SP.J.1123.2021.03045
• Reviews • Previous Articles Next Articles
LIN Shuting1,2, DING Qingqing3, ZHANG Wenmin3,4, ZHANG Lan3, LU Qiaomei1,2,*()
Received:
2021-04-05
Online:
2021-12-08
Published:
2021-11-23
Contact:
LU Qiaomei
Supported by:
Type of plant hormones | Introduction | Representative structure | Common compounds and their abbreviations |
---|---|---|---|
Auxin (Aux) | Discovered in 1880, promote growth at low concentration while inhibit growth at high concentration. | ![]() | indole acetic acid (IAA) 4-chloroindole acetic acid (4-Cl-IAA) indole butyric acid (IBA) indole propionic acid (IPA) naphthalene acetic acid (NAA) 2-naphthoxyacetic acid (2-NOA) 2,4-dichlorophenoxyacetic acid (2,4-D) |
Gibberellins (GAs) | Discovered in 1934, promote cell elongation and germination, relieve seed dormancy, etc. | ![]() | gibberellic acid (GA3) gibberellin 1 (GA1) gibberellin 4 (GA4) gibberellin 7 (GA7) |
Cytokinins (CTKs) | Discovered in 1955, promote cell division and bud differentiation, delay senescence, etc. | ![]() | zeatin (ZT) dihydrozeatin (DHZ) isopentenyl adenine (iP) zeatin riboside (ZR) kinetin (KT) 6-benzylaminopurine (BA) |
Abscisic acid (ABA) | Discovered in 1963, promote dormancy, close stomata, increase stress resistance, etc. | ![]() | abscisic acid |
Ethylene (ETH) | Discovered in 1901, the only gaseous plant hormone, promote organ shedding, stomata closure and fruit ripening, etc. | ![]() | ethylene |
Brassinolides (BRs) | Discovered in 1979, promote cell elongation and division, enhance stress resistance, etc. | ![]() | brassinolide (BL) 2,4-epibrassinolide (2,4-epiBL) |
Strigolactones (SLs) | Discovered in 1966, promote the symbiosis of plants and soil microorganisms, etc. | ![]() | strigolactone (SL) 5-deoxystrigol |
Jasmonic acids (JAs) | Discovered in 1962, close stomata and enhance stress resistance. | ![]() | jasmonic acid (JA) methyl jasmonate (MeJA) |
Salicylic acid (SA) | Discovered in 1992, enhance stress resistance. | ![]() | salicylic acid |
Table 1 Basic information of plant hormones
Type of plant hormones | Introduction | Representative structure | Common compounds and their abbreviations |
---|---|---|---|
Auxin (Aux) | Discovered in 1880, promote growth at low concentration while inhibit growth at high concentration. | ![]() | indole acetic acid (IAA) 4-chloroindole acetic acid (4-Cl-IAA) indole butyric acid (IBA) indole propionic acid (IPA) naphthalene acetic acid (NAA) 2-naphthoxyacetic acid (2-NOA) 2,4-dichlorophenoxyacetic acid (2,4-D) |
Gibberellins (GAs) | Discovered in 1934, promote cell elongation and germination, relieve seed dormancy, etc. | ![]() | gibberellic acid (GA3) gibberellin 1 (GA1) gibberellin 4 (GA4) gibberellin 7 (GA7) |
Cytokinins (CTKs) | Discovered in 1955, promote cell division and bud differentiation, delay senescence, etc. | ![]() | zeatin (ZT) dihydrozeatin (DHZ) isopentenyl adenine (iP) zeatin riboside (ZR) kinetin (KT) 6-benzylaminopurine (BA) |
Abscisic acid (ABA) | Discovered in 1963, promote dormancy, close stomata, increase stress resistance, etc. | ![]() | abscisic acid |
Ethylene (ETH) | Discovered in 1901, the only gaseous plant hormone, promote organ shedding, stomata closure and fruit ripening, etc. | ![]() | ethylene |
Brassinolides (BRs) | Discovered in 1979, promote cell elongation and division, enhance stress resistance, etc. | ![]() | brassinolide (BL) 2,4-epibrassinolide (2,4-epiBL) |
Strigolactones (SLs) | Discovered in 1966, promote the symbiosis of plants and soil microorganisms, etc. | ![]() | strigolactone (SL) 5-deoxystrigol |
Jasmonic acids (JAs) | Discovered in 1962, close stomata and enhance stress resistance. | ![]() | jasmonic acid (JA) methyl jasmonate (MeJA) |
Salicylic acid (SA) | Discovered in 1992, enhance stress resistance. | ![]() | salicylic acid |
Adsorbent | Analytical method | Analyte | Detection limit | Sample | Reference | |
---|---|---|---|---|---|---|
MWCNTs | SPE-HPLC | IBA, NAA | 1.2-3.0 | ng/mL | bean sprouts | [ |
CNTs-β-CD-HF | SPME-HPLC | NAA, 2-NOA | 0.8-1.5 | ng/g | tomato | [ |
CNTs-HF | EME-HPLC | NAA, 2-NOA | 1.5-2.0 | ng/g | tomato | [ |
N-doped CNTs-HF | SPME-HPLC | NAA, 2-NOA | 1.0-1.5 | ng/g | tomato | [ |
Ntim-GO/SiO2 | SPE-HPLC | SA | 0.50 | ng/mL | honey | [ |
Fe3O4/RGO@β-CD | MSPE-HPLC | NAA, 2-NOA | 0.67 | ng/g | tomato | [ |
Fe3O4@SiO2/GO/ β-CD | MSPE-LC-MS/MS | NAA, 2,4-D, etc | 0.04-0.28 | ng/g | cucumber, tomato, sprouts, asparagus lettuce and cabbage | [ |
Fe3O4@SiO2/GO/ β-CD/IL | MSPE-LC-MS/MS | Aux, CTKs | 0.01-0.18 | ng/g | cabbage, cucumber, tomato, eggplant and sprouts | [ |
C18@GO@PDDA | SPME-HPLC | SA, 3-SA | 1.8-2.8 | ng/mL | aloe | [ |
GO/Ppy | PT-SPE-HPLC | IPA, IBA, NAA | 1.2-1.7 | ng/g | papaya | [ |
IL-TGO | PT-SPE-HPLC | IAA, NAA, 2,4-D | 4.0-26 | ng/g | bean sprouts | [ |
SiO2@GO | dSPE-HPLC | Aux, ABA | 30-50 | ng/mL | arabidopsis, peach, cucumber, ginger and tomato | [ |
PEDOT-SG | SPME-HPLC | JA, MeJA | 0.05-0.5 | ng/mL | winter flower | [ |
GCB | dSPE-LC-MS/MS | Aux, CTKs, GAs, JAs, SA | 0.02-31.09 | fmol | rice | [ |
C18, PSA, GCB | dSPE-LC-MS/MS | ABA, Aux, GAs, CTKs | <10 | ng/g | Chinese medicine | [ |
PVPP-GCB | dSPE-LC-MS/MS | ABA, Aux, GAs | 0.1-120.1 | ng/g | tea | [ |
g-C3N4@SiO2 | SPE-HPLC | Aux, SA | 1.9-5.7 | ng/mL | coconut water | [ |
Co@Co3O4/OCN | MSPE-LC-MS/MS | IAA, IPA, IBA | 0.2-4.0 | pg/mL | perilla frutescens | [ |
CCFs | SPME-GC-MS | JA, IAA, ABA | 0.04-0.17 | ng/mL | tomato | [ |
CFs-IL | SPME-LC-MS/MS | Aux, ABA, GAs, CTKs, SA, JAs, BRs | 1.3-55.7 | pg/mL | tomato | [ |
Fe3O4@Ti3C2@β-CD | MSPE-UPLC-MS/MS | GAs, Aux, ABA, JA | 2.18-45.39 | pg/mL | oilseed | [ |
Table 2 Application of carbonyl materials in SPE-related methods for plant hormone analysis
Adsorbent | Analytical method | Analyte | Detection limit | Sample | Reference | |
---|---|---|---|---|---|---|
MWCNTs | SPE-HPLC | IBA, NAA | 1.2-3.0 | ng/mL | bean sprouts | [ |
CNTs-β-CD-HF | SPME-HPLC | NAA, 2-NOA | 0.8-1.5 | ng/g | tomato | [ |
CNTs-HF | EME-HPLC | NAA, 2-NOA | 1.5-2.0 | ng/g | tomato | [ |
N-doped CNTs-HF | SPME-HPLC | NAA, 2-NOA | 1.0-1.5 | ng/g | tomato | [ |
Ntim-GO/SiO2 | SPE-HPLC | SA | 0.50 | ng/mL | honey | [ |
Fe3O4/RGO@β-CD | MSPE-HPLC | NAA, 2-NOA | 0.67 | ng/g | tomato | [ |
Fe3O4@SiO2/GO/ β-CD | MSPE-LC-MS/MS | NAA, 2,4-D, etc | 0.04-0.28 | ng/g | cucumber, tomato, sprouts, asparagus lettuce and cabbage | [ |
Fe3O4@SiO2/GO/ β-CD/IL | MSPE-LC-MS/MS | Aux, CTKs | 0.01-0.18 | ng/g | cabbage, cucumber, tomato, eggplant and sprouts | [ |
C18@GO@PDDA | SPME-HPLC | SA, 3-SA | 1.8-2.8 | ng/mL | aloe | [ |
GO/Ppy | PT-SPE-HPLC | IPA, IBA, NAA | 1.2-1.7 | ng/g | papaya | [ |
IL-TGO | PT-SPE-HPLC | IAA, NAA, 2,4-D | 4.0-26 | ng/g | bean sprouts | [ |
SiO2@GO | dSPE-HPLC | Aux, ABA | 30-50 | ng/mL | arabidopsis, peach, cucumber, ginger and tomato | [ |
PEDOT-SG | SPME-HPLC | JA, MeJA | 0.05-0.5 | ng/mL | winter flower | [ |
GCB | dSPE-LC-MS/MS | Aux, CTKs, GAs, JAs, SA | 0.02-31.09 | fmol | rice | [ |
C18, PSA, GCB | dSPE-LC-MS/MS | ABA, Aux, GAs, CTKs | <10 | ng/g | Chinese medicine | [ |
PVPP-GCB | dSPE-LC-MS/MS | ABA, Aux, GAs | 0.1-120.1 | ng/g | tea | [ |
g-C3N4@SiO2 | SPE-HPLC | Aux, SA | 1.9-5.7 | ng/mL | coconut water | [ |
Co@Co3O4/OCN | MSPE-LC-MS/MS | IAA, IPA, IBA | 0.2-4.0 | pg/mL | perilla frutescens | [ |
CCFs | SPME-GC-MS | JA, IAA, ABA | 0.04-0.17 | ng/mL | tomato | [ |
CFs-IL | SPME-LC-MS/MS | Aux, ABA, GAs, CTKs, SA, JAs, BRs | 1.3-55.7 | pg/mL | tomato | [ |
Fe3O4@Ti3C2@β-CD | MSPE-UPLC-MS/MS | GAs, Aux, ABA, JA | 2.18-45.39 | pg/mL | oilseed | [ |
Adsorbent | Pretreatment | Analyte | Recovery/% | Sample | Reference | |
---|---|---|---|---|---|---|
MOF-5 | MSPE | GAs | 71.8- | 127.4 | buckwheat seedling | [ |
ZIF-8/poly(MMA-EGDMA) | SBSE | ABA, Aux, SA | 82.7- | 111.0 | apple, pear | [ |
ZIF-8@SiO2 | dSPE | Aux, CTKs | 73.2- | 89.6 | navel orange | [ |
Fe3O4-MWCNTs-OH@poly-ZIF67 | MSPE | NAA | 92.4- | 96.3 | apple | [ |
Co@NC-MON-2NH2 | MSPE | SA, NAA, 1-NOA | 77.9- | 114.4 | tomato, mung bean sprout, cucumber | [ |
UiO-67 | dSPE | GA3, Aux | 89.3- | 102.3 | grapefruit, apple, pear | [ |
UiO-66/PAN | PT-SPE | Aux | 88.3- | 105.2 | watermelon, mung bean sprouts | [ |
MSN@MIL-101(Fe) | dSPE | ABA, Aux | 76.1- | 113.0 | mung bean sprouts | [ |
MOF-199/CNTs | SPME | ETH | 86.8- | 105.0 | durian husk, wampee, blueberry, grape | [ |
CuTPA MOF | SPME | ETH | - | banana, avocado | [ |
Table 3 Application of metal-organic frameworks in SPE-related methods for plant hormone analysis
Adsorbent | Pretreatment | Analyte | Recovery/% | Sample | Reference | |
---|---|---|---|---|---|---|
MOF-5 | MSPE | GAs | 71.8- | 127.4 | buckwheat seedling | [ |
ZIF-8/poly(MMA-EGDMA) | SBSE | ABA, Aux, SA | 82.7- | 111.0 | apple, pear | [ |
ZIF-8@SiO2 | dSPE | Aux, CTKs | 73.2- | 89.6 | navel orange | [ |
Fe3O4-MWCNTs-OH@poly-ZIF67 | MSPE | NAA | 92.4- | 96.3 | apple | [ |
Co@NC-MON-2NH2 | MSPE | SA, NAA, 1-NOA | 77.9- | 114.4 | tomato, mung bean sprout, cucumber | [ |
UiO-67 | dSPE | GA3, Aux | 89.3- | 102.3 | grapefruit, apple, pear | [ |
UiO-66/PAN | PT-SPE | Aux | 88.3- | 105.2 | watermelon, mung bean sprouts | [ |
MSN@MIL-101(Fe) | dSPE | ABA, Aux | 76.1- | 113.0 | mung bean sprouts | [ |
MOF-199/CNTs | SPME | ETH | 86.8- | 105.0 | durian husk, wampee, blueberry, grape | [ |
CuTPA MOF | SPME | ETH | - | banana, avocado | [ |
|
[1] | ZHOU Ranfeng, ZHANG Huixian, YIN Xiaoli, PENG Xitian. Progress in the application of novel nano-materials to the safety analysis of agricultural products [J]. Chinese Journal of Chromatography, 2023, 41(9): 731-741. |
[2] | QU Jian, NI Yuwen, YU Haoran, TIAN Hongxu, WANG Longxing, CHEN Jiping. New pretreatment method for detecting petroleum hydrocarbons in soil: silica-gel dehydration and cyclohexane extraction [J]. Chinese Journal of Chromatography, 2023, 41(9): 814-820. |
[3] | GAO Yiyang, DING Yali, CHEN Luyu, DU Fang, XIN Xubo, FENG Juanjuan, SUN Mingxia, FENG Yang, SUN Min. Recent application advances of covalent organic frameworks for solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(7): 545-553. |
[4] | XIA Baolin, WANG Shitao, YIN Jingjing, ZHANG Weiyi, YANG Na, LIU Qiang, WU Haijing. Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(7): 591-601. |
[5] | WANG Xuemei, HUANG Lixia, YUAN Na, HUANG Pengfei, DU Xinzhen, LU Xiaoquan. Progress in preparation of hollow nanomaterials and their application to sample pretreatment [J]. Chinese Journal of Chromatography, 2023, 41(6): 457-471. |
[6] | WANG Yuanyuan, LI Lulu, LÜ Jia, CHEN Yongyan, ZHANG Lan. Determination of 13 halobenzoquinone disinfection by-products in drinking water using solid phase extraction-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(6): 482-489. |
[7] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[8] | WU Shaoming, OUYANG Liqun, MENG Peng, HE Menghang, LIN Qin, CHEN Yankai, LIU Wenjing, SU Xiaoming, DAI Ming. Determination of 18 caine anesthetics in animal meat using solid phase extraction combined with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(5): 434-442. |
[9] | LU Huiyuan, WANG Lijuan, ZHANG Jiongkai, ZHANG Chizhong, LI Tianjuan, JI Ruixue, SHEN Weijian. Determination of four fatty acid ethyl esters in olive oil by solid phase extraction-gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(4): 359-365. |
[10] | HAN Linxue, ZHANG Xu, HU Xiaojian, ZHANG Haijing, QIU Tian, LIN Xiao, ZHU Ying. Determination of 12 typical personal care products in human urine samples by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(4): 312-322. |
[11] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[12] | YE Hanzhang, LIU Tingting, DING Yongli, GU Jingjing, LI Yuhao, WANG Qi, ZHANG Zhan’en, WANG Xuedong. Recent advances in the development and application of effervescence-assisted microextraction techniques [J]. Chinese Journal of Chromatography, 2023, 41(4): 289-301. |
[13] | ZHANG Xu, HAN Linxue, QIU Tian, HU Xiaojian, ZHU Ying, YANG Yanwei. Determination of phenoxyacetic herbicides, metabolites of organophosphorus and pyrethroid pesticides in human urine using solid phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 224-232. |
[14] | XUE Kunpeng, YU Lingyu, REN Xingfa, TU Bingfang, CHEN Chao, XU Ting, HE Huan, HU Shuai. Determination of 15 carbonyl compounds in soil using improved solid phase extraction-high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(3): 265-273. |
[15] | WANG Jin, YE Kaixiao, TIAN Yan, LIU Ke, LIANG Liuling, LI Qingqian, HUANG Ning, WANG Xinting. Simultaneous determination of 22 antibiotics in environmental water samples by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 241-249. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 652
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||