Chinese Journal of Chromatography ›› 2022, Vol. 40 ›› Issue (8): 694-703.DOI: 10.3724/SP.J.1123.2022.03002

• Special Columnof Separation and Analysis for Food Safety-Functional Adsorbents • Previous Articles     Next Articles

Separation and enrichment of trace aflatoxin B1 in grains by magnetic nanomaterials based on SiO2@Fe3O4

LI Xiaohan1, LU Yingying1, DONG Yongzhen1, JIANG Feng2, FAN Zhiyong2, PAN Hui3, LIU Mingjun3, CHEN Yiping1,*()   

  1. 1. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
    2. Hubei Provincial Institute for Food Supervision and Test, Wuhan 430071, China
    3. Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China
  • Received:2022-03-03 Online:2022-08-08 Published:2022-07-29
  • Contact: CHEN Yiping
  • Supported by:
    Fundamental Research Funds for the Central Universities(2662020SPPY014);Laboratory of Lingnan Modern Agriculture Project(NZ2021036)

Abstract:

In this study, a magnetic nanomaterial antibody (Ab)-SiO2@Fe3O4 was synthesized, which was employed to absorb aflatoxin B1 (AFB1) in complicated grain matrices. The Ab-SiO2@Fe3O4 material was then paired with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for subsequent accurate detection. The Ab-SiO2@Fe3O4 material has a specific adsorption capacity for AFB1 because of the stable and specific biological binding between antigen and antibody. This process can achieve the identification between the material and food matrix quickly, thereby completing the separation and enrichment process. Then, high sensitivity and high accuracy HPLC-MS/MS were employed for signal readout and actual quantification, which can significantly increase the detection efficiency and enable high-throughput detection of numerous samples. In the pretreatment process, Fe3O4 was first synthesized by microwave-assisted hydrothermal synthesis within 1 h, and Ab-SiO2@Fe3O4 was then produced using the enhanced Stober’s approach. This material with high adsorption performance was synthesized under relatively mild conditions and short time. To obtain Ab-SiO2@Fe3O4 materials with uniform particle size, magnetic properties, and dispersibility that met the requirements, synthesis conditions of Ab-SiO2@Fe3O4 and conditions for capturing the AFB1 target were analyzed. The findings demonstrated that the best effect was obtained when the dosage of FeCl3·6H2O was 10.0 mmol, the heating time was 40 min, and 100 μL tetraethoxysilane was employed for SiO2 coating. The AFB1 antibody was then combined with the surface of SiO2@Fe3O4 under several conditions. The findings revealed that the best coupling efficiency of Ab could be obtained when the concentration of 2-morpholinoethanesulfonic acid monohydrate (MES) was 10 mmol/L, pH was 6.5, and the molar ratio of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)∶N-hydroxysuccinimide substances (NHS) was 2∶1. The coupling buffer was then selected as phosphate buffer (PBS) with pH=7.4, and 8 mg Ab-SiO2@Fe3O4 was employed to separate and enrich AFB1 at 37 ℃ for 10 min. In the actual detection, acetonitrile-water-formic acid (85∶10∶5, v/v/v) was employed as the extraction solution. After ultrasonic extraction for 10 min, Ab-SiO2@Fe3O4 was employed to separate and enrich AFB1 in the extract. The supernatant was dried with nitrogen and reconstituted with 1-mL acetonitrile. The solution was then filtered through a 0.22 μm filter and detected using HPLC-MS/MS, thereby realizing the quick and quantitative detection of AFB1. AFB1 had an excellent linear relationship in the range of 2-50 μg/L under the optimal analytical conditions, and the correlation coefficient was less than 0.99. The LOD was 0.04 μg/kg, and the LOQ was 0.13 μg/kg. The spiked recoveries of AFB1 in three grain matrices ranged from 76.21% to 92.85% with RSD≤5.29% at four different spiked levels. The approach was applied to the determination and analysis of AFB1 in 30 real grain samples of rice, corn, and wheat. The findings demonstrated that AFB1 was detected in one wheat sample and two corn samples, and its content was 0.38, 0.13, and 0.47 μg/kg, respectively, and no toxins were found in other samples. The approach combined Ab-SiO2@Fe3O4 magnetic nanomaterials with HPLC-MS/MS, which could obtain high-efficiency separation and enrichment of AFB1. Furthermore, the low-cost Ab-SiO2@Fe3O4 could be stored for more than a week and complete the pretreatment process within 30 min. This effective pretreatment process combined with HPLC-MS/MS could realize the analysis of several samples within a short time, and had a promising application prospect in the detection of AFB1 in grains.

Key words: high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), magnetic nanoparticles, aflatoxin B1 (AFB1), grain, antibody (Ab)

CLC Number: