Chinese Journal of Chromatography ›› 2025, Vol. 43 ›› Issue (12): 1300-1313.DOI: 10.3724/SP.J.1123.2025.04025
• Reviews • Previous Articles Next Articles
LI Jiaxin1, ZHAO Lizhu1,2,*(
), SUN Xiangming1, HE Zhiqiang3, CAO Huiling1, LUO Yingjin1, YANG Bo1,2,*(
)
Received:2025-04-22
Online:2025-12-08
Published:2025-12-08
Supported by:CLC Number:
LI Jiaxin, ZHAO Lizhu, SUN Xiangming, HE Zhiqiang, CAO Huiling, LUO Yingjin, YANG Bo. Research progress on ionic liquid-functionalized magnetic Fe3O4 nanomaterials in sample pretreatment- chromatographic analysis[J]. Chinese Journal of Chromatography, 2025, 43(12): 1300-1313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2025.04025
Fig. 1 Schematic diagrams of the synthesis process of ionic liquid-functionalized magnetic Fe3O4 nanomaterials (IL-Fe3O4 NPs)a. physical coating; b. chemical bonding.
Fig. 2 Schematic diagram of the classification of IL-Fe3O4 NPsMCNTS: multi walled carbon nanotubes; GO: graphene oxide; β-CD: β-cyclodextrin; MOFs: metal organic frameworks; MCM: Mobil Composition of Matter.
| Materials | Advantages | Disadvantages | Ref. |
|---|---|---|---|
| ILs modified Fe3O4 NPs | simple synthesis, low cost, high magnetic response, easy to separate and recycle | low specific surface area, small adsorption capacity | [ |
| ILs modified silica-based Fe3O4 NPs | magnetic responsiveness, easy to separate and recycle, good biocompatibility, SiO2 shell improves chemical stability and corrosion resistance, mesoporous structure improves load and mass transfer efficiency, easy surface functionalization, high compatibility with various ILs | SiO2 shell may mask magnetic core, reducing magnetic responsiveness | [ |
| ILs modified carbon-based Fe3O4 NPs | magnetic responsiveness, easy to separate and recycle, high specific surface area, abundant π-electron system, numerous active sites, excellent chemical stability, high temperature and acid/alkali resistant | high cost, carbon coating induced magnetic attenuation | [ |
| ILs modified MOFs-based Fe3O4 NPs | strong magnetic responsiveness, facile separation, efficient recyclability, enhanced adsorption capacity, high porosity, tunable pore size, abundant unsaturated metal sites, effective coordination capability | high cost, complex synthesis process | [ |
Table 1 Advantages and disadvantages of IL-Fe3O4 NPs
| Materials | Advantages | Disadvantages | Ref. |
|---|---|---|---|
| ILs modified Fe3O4 NPs | simple synthesis, low cost, high magnetic response, easy to separate and recycle | low specific surface area, small adsorption capacity | [ |
| ILs modified silica-based Fe3O4 NPs | magnetic responsiveness, easy to separate and recycle, good biocompatibility, SiO2 shell improves chemical stability and corrosion resistance, mesoporous structure improves load and mass transfer efficiency, easy surface functionalization, high compatibility with various ILs | SiO2 shell may mask magnetic core, reducing magnetic responsiveness | [ |
| ILs modified carbon-based Fe3O4 NPs | magnetic responsiveness, easy to separate and recycle, high specific surface area, abundant π-electron system, numerous active sites, excellent chemical stability, high temperature and acid/alkali resistant | high cost, carbon coating induced magnetic attenuation | [ |
| ILs modified MOFs-based Fe3O4 NPs | strong magnetic responsiveness, facile separation, efficient recyclability, enhanced adsorption capacity, high porosity, tunable pore size, abundant unsaturated metal sites, effective coordination capability | high cost, complex synthesis process | [ |
Fig. 4 Schematic diagrams of the extraction modes of IL-Fe3O4 NPsa. magnetic solid-phase extraction; b. in-tube solid-phase microextraction; c. pipette-tip solid-phase extraction.
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Endocrine disruptors | Poly[AMIM][NTf2]@SiO2@Fe3O4 | lake water, river water | organic ultraviolet filters | IT-SPME | HPLC-DAD | 0.040-0.26 μg/L | [ |
| [HMIM][PF6]@Fe3O4@ZIF-8@MWCNTs | tap water | dichlorodiphenyltrichloroethane | MSPE | GC-MS/MS | 0.0010-0.0070 µg/L | [ | |
| [diPrNH2TMG][Cl]@SiO2@Fe3O4 | tap water, lake water | polycyclic aromatic hydrocarbons | MSPE | HPLC-UV | 0.050 ng/mL | [ | |
| [C16MIM][Br]@Fe3O4@GO | water, tap water | chlorophenol | MHMSPE | HPLC-UV | 0.10-0.13 µg/L | [ | |
| Metal ions | [C6MIM][Ala]@SiO2@Fe3O4@GO | water | Cr(Ⅲ), Cr(Ⅵ) | MSPE | ICP-OES | 0.19-0.41 µg/L | [ |
| [MIM][Ala]@SiO2@Fe3O4@GO | sewage | Cd(Ⅱ) | MSPE | ICP-OES | 0.0010 ng/mL | [ | |
| IL@β-CDCP@Fe3O4 | city water, lake water | Mn(Ⅱ), Mn(Ⅶ) | MSPE | ICP-OES | 0.15-0.27 μg/L | [ | |
| Dye | [Hpy][NTf2]@SiO2@Fe3O4 | river water, tap water, drinking water, waste water | malachite green, crystal violet, methylene blue | DLLME-MSPE | HPLC-UV | 0.030-0.050 μg/L | [ |
| IL@Fe3O4@MoS2@RGO | lake water, river water | methylene blue | MSPE | UV-Vis | 6.4 µg/L | [ | |
| DICAT@Fe3O4@PANI | industrial waste water, lake water | rhodamine | MSPE | UV-Vis | - | [ | |
| Pesticides | [BMIM][Cl]@MCM@Fe3O4 | sea water, spring water, agricultural water | organophosphates, carbamates, pyrethroids | MSPE | GC-μ-ECD | 0.040-1.6 μg/kg | [ |
| [C6OHMIm][Br]@Fe3O4@GO | field water, river water, surface water | triazine and urea herbicides | MSPE | HPLC-DAD | 0.040-0.050 μg/L | [ | |
| Drugs | [BMIM][Br]@Fe3O4@GO | sewage | sulfonamide antibiotic | MSPE | UPLC-MS/MS | 0.75-1.5 ng/L | [ |
| IL-COOH@Fe3O4@UiO-67 | river water | fluoroquinolone antibiotic | MSPE | HPLC-DAD | 0.010-0.020 μg/L | [ | |
| Biotoxins | [BMIM][Br]@Fe3O4@GO | water | microcystins | MSPE | UPLC-MS/MS | 0.27-0.41 ng/L | [ |
Table 2 Applications of IL-Fe3O4 NPs in environmental samples
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Endocrine disruptors | Poly[AMIM][NTf2]@SiO2@Fe3O4 | lake water, river water | organic ultraviolet filters | IT-SPME | HPLC-DAD | 0.040-0.26 μg/L | [ |
| [HMIM][PF6]@Fe3O4@ZIF-8@MWCNTs | tap water | dichlorodiphenyltrichloroethane | MSPE | GC-MS/MS | 0.0010-0.0070 µg/L | [ | |
| [diPrNH2TMG][Cl]@SiO2@Fe3O4 | tap water, lake water | polycyclic aromatic hydrocarbons | MSPE | HPLC-UV | 0.050 ng/mL | [ | |
| [C16MIM][Br]@Fe3O4@GO | water, tap water | chlorophenol | MHMSPE | HPLC-UV | 0.10-0.13 µg/L | [ | |
| Metal ions | [C6MIM][Ala]@SiO2@Fe3O4@GO | water | Cr(Ⅲ), Cr(Ⅵ) | MSPE | ICP-OES | 0.19-0.41 µg/L | [ |
| [MIM][Ala]@SiO2@Fe3O4@GO | sewage | Cd(Ⅱ) | MSPE | ICP-OES | 0.0010 ng/mL | [ | |
| IL@β-CDCP@Fe3O4 | city water, lake water | Mn(Ⅱ), Mn(Ⅶ) | MSPE | ICP-OES | 0.15-0.27 μg/L | [ | |
| Dye | [Hpy][NTf2]@SiO2@Fe3O4 | river water, tap water, drinking water, waste water | malachite green, crystal violet, methylene blue | DLLME-MSPE | HPLC-UV | 0.030-0.050 μg/L | [ |
| IL@Fe3O4@MoS2@RGO | lake water, river water | methylene blue | MSPE | UV-Vis | 6.4 µg/L | [ | |
| DICAT@Fe3O4@PANI | industrial waste water, lake water | rhodamine | MSPE | UV-Vis | - | [ | |
| Pesticides | [BMIM][Cl]@MCM@Fe3O4 | sea water, spring water, agricultural water | organophosphates, carbamates, pyrethroids | MSPE | GC-μ-ECD | 0.040-1.6 μg/kg | [ |
| [C6OHMIm][Br]@Fe3O4@GO | field water, river water, surface water | triazine and urea herbicides | MSPE | HPLC-DAD | 0.040-0.050 μg/L | [ | |
| Drugs | [BMIM][Br]@Fe3O4@GO | sewage | sulfonamide antibiotic | MSPE | UPLC-MS/MS | 0.75-1.5 ng/L | [ |
| IL-COOH@Fe3O4@UiO-67 | river water | fluoroquinolone antibiotic | MSPE | HPLC-DAD | 0.010-0.020 μg/L | [ | |
| Biotoxins | [BMIM][Br]@Fe3O4@GO | water | microcystins | MSPE | UPLC-MS/MS | 0.27-0.41 ng/L | [ |
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Pesticides | Poly([VPImi-SO3H][Cl])@SiO2@Fe3O4 | vegetable | diquat | MSPE | HPLC-UV | 0.090 μg/g | [ |
| [C8OBIM][Gly]@SiO2@Fe3O4 | fruit juice serum | benzimidazoles | MSPE | HPLC-MS/MS | 0.060-0.150 μg/L | [ | |
| PIL@mSiO2@nSiO2@Fe3O4 | apple | pyrethroids | MSPE | GC-MS | 0.24-2.0 ng/g | [ | |
| [BMIM][PF6]@HP-β-CD@Fe3O4 | honey | carbofuranin | MSPE | HPLC-MS/MS | 0.40 μg/kg | [ | |
| Veterinary drugs | [DABCO-C3OH][Cl]@SiO2@Fe3O4 | milk | penicillin | D-micro-SPE | UPLC-MS/MS | 0.030-0.20 µg/kg | [ |
| [APMIM][Br]@Fe3O4@MWCNTs | milk, pork | fluoroquinolone antibiotic | MSPE | HPLC-UV | 0.33-0.78 ng/mL | [ | |
| IL@Fe3O4@CS | milk | antibiotics and their metabolites | MSPE | UPLC-MS/MS | 0.040-0.19 μg/kg | [ | |
| Additive | [OMIM][PF6]@SiO2@Fe3O4 | tomato sauces | safranine T | MSPE | UV-Vis | 0.37 ng/mL | [ |
| Poly([VOIM][Br])@SiO2@Fe3O4@G | vegetable | preservatives | QuEChERS | GC-MS/MS | 0.020-0.42 μg/L | [ | |
| [BMIM][Trp]@SiO2@Fe3O4@GO | pepper, water | sudanⅠ-Ⅳ | MSPE | HPLC-UV | 0.010-0.50 µg/mL | [ | |
| Metal ions | [DABCO-PDO][Cl]@SiO2@Fe3O4 | milk | Pb(Ⅱ), Cd(Ⅱ) | MSPE | FAAS | 0.070-0.090 µg/L | [ |
| [HMIM][PF6]@SiO2@Fe3O4@GO | shellfish | Pb(Ⅱ), Cu(Ⅱ), Cr(Ⅱ) | d-MSPE | ICP-MS | 2.4-3.8 ng/L | [ | |
| Biological toxins | [HMIM][Br]@Fe3O4-COOH@MIL-101 | milk | aflatoxin | MSPE | HPLC-FLD | 0.030-0.15 μg/L | [ |
| Poly([VDIm][Br])@SiO2@Fe3O4 | vegetable oil | vomitoxin | MSPE | UHPLC-UV | 3.3 μg/kg | [ | |
| Endocrine disruptors | [C4MIM][PF6]@HP-β-CD@Fe3O4 | drink | bisphenol A | MSPE | HPLC-FLD | 0.40 μg/L | [ |
| 3D-[APMIM][Br]@Fe3O4@GO | vegetable oil | polycyclic aromatic hydrocarbons | MSPE | GC-MS | 0.10-0.60 μg/kg | [ | |
| Secondary metabolites | [VOIM][Br]@SiO2@Fe3O4@CS@GO | coffee, milk tea, hot pot seasoning | alkaloids | MSPE | UPLC-MS/MS | - | [ |
| Poly(CalixIL)@SiO2@Fe3O4 | fruit juice, green tea | flavonoids | MSPE | HPLC-DAD | 0.15-0.75 ng/mL | [ |
Table 3 Applications of IL-Fe3O4 NPs in food samples
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Pesticides | Poly([VPImi-SO3H][Cl])@SiO2@Fe3O4 | vegetable | diquat | MSPE | HPLC-UV | 0.090 μg/g | [ |
| [C8OBIM][Gly]@SiO2@Fe3O4 | fruit juice serum | benzimidazoles | MSPE | HPLC-MS/MS | 0.060-0.150 μg/L | [ | |
| PIL@mSiO2@nSiO2@Fe3O4 | apple | pyrethroids | MSPE | GC-MS | 0.24-2.0 ng/g | [ | |
| [BMIM][PF6]@HP-β-CD@Fe3O4 | honey | carbofuranin | MSPE | HPLC-MS/MS | 0.40 μg/kg | [ | |
| Veterinary drugs | [DABCO-C3OH][Cl]@SiO2@Fe3O4 | milk | penicillin | D-micro-SPE | UPLC-MS/MS | 0.030-0.20 µg/kg | [ |
| [APMIM][Br]@Fe3O4@MWCNTs | milk, pork | fluoroquinolone antibiotic | MSPE | HPLC-UV | 0.33-0.78 ng/mL | [ | |
| IL@Fe3O4@CS | milk | antibiotics and their metabolites | MSPE | UPLC-MS/MS | 0.040-0.19 μg/kg | [ | |
| Additive | [OMIM][PF6]@SiO2@Fe3O4 | tomato sauces | safranine T | MSPE | UV-Vis | 0.37 ng/mL | [ |
| Poly([VOIM][Br])@SiO2@Fe3O4@G | vegetable | preservatives | QuEChERS | GC-MS/MS | 0.020-0.42 μg/L | [ | |
| [BMIM][Trp]@SiO2@Fe3O4@GO | pepper, water | sudanⅠ-Ⅳ | MSPE | HPLC-UV | 0.010-0.50 µg/mL | [ | |
| Metal ions | [DABCO-PDO][Cl]@SiO2@Fe3O4 | milk | Pb(Ⅱ), Cd(Ⅱ) | MSPE | FAAS | 0.070-0.090 µg/L | [ |
| [HMIM][PF6]@SiO2@Fe3O4@GO | shellfish | Pb(Ⅱ), Cu(Ⅱ), Cr(Ⅱ) | d-MSPE | ICP-MS | 2.4-3.8 ng/L | [ | |
| Biological toxins | [HMIM][Br]@Fe3O4-COOH@MIL-101 | milk | aflatoxin | MSPE | HPLC-FLD | 0.030-0.15 μg/L | [ |
| Poly([VDIm][Br])@SiO2@Fe3O4 | vegetable oil | vomitoxin | MSPE | UHPLC-UV | 3.3 μg/kg | [ | |
| Endocrine disruptors | [C4MIM][PF6]@HP-β-CD@Fe3O4 | drink | bisphenol A | MSPE | HPLC-FLD | 0.40 μg/L | [ |
| 3D-[APMIM][Br]@Fe3O4@GO | vegetable oil | polycyclic aromatic hydrocarbons | MSPE | GC-MS | 0.10-0.60 μg/kg | [ | |
| Secondary metabolites | [VOIM][Br]@SiO2@Fe3O4@CS@GO | coffee, milk tea, hot pot seasoning | alkaloids | MSPE | UPLC-MS/MS | - | [ |
| Poly(CalixIL)@SiO2@Fe3O4 | fruit juice, green tea | flavonoids | MSPE | HPLC-DAD | 0.15-0.75 ng/mL | [ |
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Biomolecule | [PFIL-Ti4+]@mSiO2@Fe3O4 | protein solution, saliva | phosphopeptides | MSPE | MALDI-TOFMS | - | [ |
| Poly([APr-VBIM][Cl])@Fe3O4@MWCNTs | porcine whole blood | Cu, Zn-superoxide dismutase | MSPE | UV-Vis | - | [ | |
| HDI-[EMIM][Lpro]@Fe3O4 | blood | hemoglobin | MSPE | UV-Vis | - | [ | |
| GIL@Fe3O4@GO | single-stranded DNA samples, salmon sperm DNA, sodium salt, etc. | DNA | MSPE | UV-Vis | - | [ | |
| DAAAIL@Fe3O4@PEG | rude bovine, porcine pancreas | trypsin | MSPE | UV-Vis | 3.1 μg/mL | [ | |
| Drugs | Poly([VOIM][PF6])@Fe3O4@SiO2 | plasma | empagliflozin, metformin and canagliflozin | MSPE | HPLC-UV | 0.80-6.0 ng/mL | [ |
| IL@SiO2@Fe3O4 | blood | tolmetin, indometacin, naproxen | SPE-MSPE | HPLC-UV | 0.20-0.30 mg/kg | [ | |
| [HMIM][PF6]@Fe3O4@G | urine | tramadol | MHMDSPE | HPLC-UV | 12 ng/mL | [ | |
| Endocrine disruptors | 3D-IL@Fe3O4@GO | blood | polycyclic aromatic hydrocarbons | PT-SPE | GC-MS | 0.0020-0.0040 µg/L | [ |
Table 4 Applications of IL-Fe3O4 NPs in biological samples
Classification of analytes | Adsorbents | Samples | Analytes | Extraction technology | Detection methods | LOD | Ref. |
|---|---|---|---|---|---|---|---|
| Biomolecule | [PFIL-Ti4+]@mSiO2@Fe3O4 | protein solution, saliva | phosphopeptides | MSPE | MALDI-TOFMS | - | [ |
| Poly([APr-VBIM][Cl])@Fe3O4@MWCNTs | porcine whole blood | Cu, Zn-superoxide dismutase | MSPE | UV-Vis | - | [ | |
| HDI-[EMIM][Lpro]@Fe3O4 | blood | hemoglobin | MSPE | UV-Vis | - | [ | |
| GIL@Fe3O4@GO | single-stranded DNA samples, salmon sperm DNA, sodium salt, etc. | DNA | MSPE | UV-Vis | - | [ | |
| DAAAIL@Fe3O4@PEG | rude bovine, porcine pancreas | trypsin | MSPE | UV-Vis | 3.1 μg/mL | [ | |
| Drugs | Poly([VOIM][PF6])@Fe3O4@SiO2 | plasma | empagliflozin, metformin and canagliflozin | MSPE | HPLC-UV | 0.80-6.0 ng/mL | [ |
| IL@SiO2@Fe3O4 | blood | tolmetin, indometacin, naproxen | SPE-MSPE | HPLC-UV | 0.20-0.30 mg/kg | [ | |
| [HMIM][PF6]@Fe3O4@G | urine | tramadol | MHMDSPE | HPLC-UV | 12 ng/mL | [ | |
| Endocrine disruptors | 3D-IL@Fe3O4@GO | blood | polycyclic aromatic hydrocarbons | PT-SPE | GC-MS | 0.0020-0.0040 µg/L | [ |
|
| [1] | GAO Menghao, LI Xiaoying, GAO Yuan, ZHANG Haijun, CHEN Jiping. Determination of four classes of 34 chlorinated persistent organic pollutants in seawater by solid-phase extraction and gas chromatography-electrostatic field orbitrap high resolution mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(4): 345-354. |
| [2] | FENG Zhuangzhuang, LIN Xiao, BAO Dejun, HU Xiaojian, ZHANG Haijing, ZHU Ying, ZHANG Xu. Determination of four oxidative stress biomarkers in human urine using solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(4): 317-325. |
| [3] | LIN Qiang, WANG Jian, LI Jingjing, SU Dongxia, LI Meili, WANG Jia, NIU Yumin, SHAO Bing. Determination of 17 perfluorinated/polyfluoroalkyl compounds in serum by high-throughput solid-phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(3): 252-260. |
| [4] | CHU Kun, LI Jinhua, WANG Qianqian, LI Xiaotong, WU Shuai, CHEN Chen. Determination of tetracyclines in animal muscle tissues by ultra performance liquid chromatography- tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(12): 1354-1363. |
| [5] | JIAO Wenmei, YANG Jingming, XU Ce, GAO Fukang, SHEN Luyao, YUAN Yubo, GUO Zhifen, HUANG Guang. Solid-phase extraction coupled with high performance liquid chromatography-triple quadrupole mass spectrometry for simultaneous determination of seven coumarins in water samples from drinking water treatment plants [J]. Chinese Journal of Chromatography, 2025, 43(1): 78-86. |
| [6] | WU Enhui, QIAO Liang. Microbial metaproteomics——From sample processing to data acquisition and analysis [J]. Chinese Journal of Chromatography, 2024, 42(7): 658-668. |
| [7] | XIE Baoxuan, LYU Yang, LIU Zhen. Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems [J]. Chinese Journal of Chromatography, 2024, 42(6): 508-523. |
| [8] | KANG Jingyan, SHI Yanping. Recent advances in research on sample pretreatment methods based on supramolecular-derived porous organic polymers [J]. Chinese Journal of Chromatography, 2024, 42(6): 496-507. |
| [9] | HE Hongmei, XU Lingying, ZHANG Changpeng, FANG Nan, JIANG Jinhua, WANG Xiangyun, YU Jianzhong, ZHAO Xueping. Determination of three new herbicide residues in soil, sediment and water by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(3): 256-263. |
| [10] | ZHANG Mingye, CAO Yan, LI Xiang, KOU Jing, XU Qitong, YANG Sijie, ZHENG Zhiyi, LIU Jun, MEI Surong. Exposure characteristics and health risk assessment of 97 typical chemical pollutants in human serum [J]. Chinese Journal of Chromatography, 2024, 42(2): 217-223. |
| [11] | QU Jian, NI Yuwen, YU Haoran, TIAN Hongxu, WANG Longxing, CHEN Jiping. New pretreatment method for detecting petroleum hydrocarbons in soil: silica-gel dehydration and cyclohexane extraction [J]. Chinese Journal of Chromatography, 2023, 41(9): 814-820. |
| [12] | GAO Yiyang, DING Yali, CHEN Luyu, DU Fang, XIN Xubo, FENG Juanjuan, SUN Mingxia, FENG Yang, SUN Min. Recent application advances of covalent organic frameworks for solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(7): 545-553. |
| [13] | WANG Qiuxu, FENG Qiyan, ZHU Xueqiang. Determination of bisphenols in sediment by accelerated solvent extraction and solid-phase extraction purification coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(7): 582-590. |
| [14] | CHEN Dongyang, ZHANG Hao, ZHANG Lei, WANG Yihong, WANG Xiaodan, FENG Jiali, LIANG Jing, ZHONG Xuan. Determination of kojic acid in fermented foods by solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(7): 632-639. |
| [15] | WANG Xuemei, HUANG Lixia, YUAN Na, HUANG Pengfei, DU Xinzhen, LU Xiaoquan. Progress in preparation of hollow nanomaterials and their application to sample pretreatment [J]. Chinese Journal of Chromatography, 2023, 41(6): 457-471. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||