Chinese Journal of Chromatography ›› 2025, Vol. 43 ›› Issue (10): 1162-1169.DOI: 10.3724/SP.J.1123.2024.11026
• Technical Notes • Previous Articles Next Articles
FANG Li1, QIU Fengmei2,*(
), WANG Yuchao1
Received:2024-12-06
Online:2025-10-08
Published:2025-09-24
Contact:
QIU Fengmei
Supported by:CLC Number:
FANG Li, QIU Fengmei, WANG Yuchao. Quantitative determination of tetrodotoxin in poisoned biological samples by two-dimensional liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2025, 43(10): 1162-1169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2024.11026
| Step No. | Time/min | Function | Pump 1 | Pump 2 | ||||
|---|---|---|---|---|---|---|---|---|
Flow rate/ (mL/min) | φ(A)/% | φ(B)/% | Flow rate/ (mL/min) | φ(C)/% | φ(D)/% | |||
| 1 | 0 | loading | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
| 2 | 1.17 | transferring | 0.1 | 98 | 2 | 0.4 | 5 | 95 |
| 3 | 2.40 | washing | 0.2 | 10 | 90 | 0.3 | 5 | 95 |
| 4 | 3.40 | equilibrating | 0.2 | 98 | 2 | 0.3 | 5 | 95 |
| 5 | 13.4 | equilibrating | 0.3 | 98 | 2 | 0.3 | 60 | 40 |
| 6 | 14.4 | equilibrating | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
| 7 | 15.5 | equilibrating | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
Table 1 Gradient elution procedures of 2D-LC
| Step No. | Time/min | Function | Pump 1 | Pump 2 | ||||
|---|---|---|---|---|---|---|---|---|
Flow rate/ (mL/min) | φ(A)/% | φ(B)/% | Flow rate/ (mL/min) | φ(C)/% | φ(D)/% | |||
| 1 | 0 | loading | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
| 2 | 1.17 | transferring | 0.1 | 98 | 2 | 0.4 | 5 | 95 |
| 3 | 2.40 | washing | 0.2 | 10 | 90 | 0.3 | 5 | 95 |
| 4 | 3.40 | equilibrating | 0.2 | 98 | 2 | 0.3 | 5 | 95 |
| 5 | 13.4 | equilibrating | 0.3 | 98 | 2 | 0.3 | 60 | 40 |
| 6 | 14.4 | equilibrating | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
| 7 | 15.5 | equilibrating | 0.1 | 98 | 2 | 0.3 | 5 | 95 |
Fig. 3 Effects of flow rates of the second-dimensional LC on the peak shape of TTX when the first-dimensional LC was transferred to the second-dimensional LC
| Toxin | Spiked/(μg/L) | Plasma | Urine | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Intra-day (n=6) | Inter-day (n=3) | Intra-day (n=6) | Inter-day (n=3) | ||||||
| Recovery/% | RSD/% | Recovery/% | RSD/% | Recovery/% | RSD /% | Recovery/% | RSD/% | ||
| TTX | 2.0 | 92.1 | 6.1 | 91.5 | 2.7 | 84.4 | 5.7 | 84.8 | 3.8 |
| 10.0 | 89.4 | 7.2 | 91.2 | 2.3 | 91.1 | 3.0 | 89.8 | 7.5 | |
| 50.0 | 98.4 | 6.0 | 96.2 | 2.6 | 93.9 | 2.9 | 93.7 | 1.3 | |
| 200.0 | 84.4 | 3.2 | 87.7 | 3.2 | 96.9 | 5.2 | 95.7 | 1.0 | |
Table 2 Recoveries and RSDs of TTX in plasma and urine samples
| Toxin | Spiked/(μg/L) | Plasma | Urine | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Intra-day (n=6) | Inter-day (n=3) | Intra-day (n=6) | Inter-day (n=3) | ||||||
| Recovery/% | RSD/% | Recovery/% | RSD/% | Recovery/% | RSD /% | Recovery/% | RSD/% | ||
| TTX | 2.0 | 92.1 | 6.1 | 91.5 | 2.7 | 84.4 | 5.7 | 84.8 | 3.8 |
| 10.0 | 89.4 | 7.2 | 91.2 | 2.3 | 91.1 | 3.0 | 89.8 | 7.5 | |
| 50.0 | 98.4 | 6.0 | 96.2 | 2.6 | 93.9 | 2.9 | 93.7 | 1.3 | |
| 200.0 | 84.4 | 3.2 | 87.7 | 3.2 | 96.9 | 5.2 | 95.7 | 1.0 | |
| Ref. | Matrix | Sample volume/μL | Clean-up method | Analytical method | LC runtime/min | Linear range/(μg/L) | LOD/(μg/L) | LOQ/(μg/L) |
|---|---|---|---|---|---|---|---|---|
| [ | urine | 1000 | SPE with immunoaffinity column | LC-MS/MS | 6.5 | 0.05-400 | 0.02 | 0.05 |
| plasma | 0.05-400 | 0.02 | 0.05 | |||||
| [ | urine | 500 | protein precipitation | LC-MS/MS | 16 | 0.986-98.6 | NF | 0.986 |
| [ | blood | 1000 | SPE with C18 cartridge | LC-MS | 10 | 30-3000 | 5 | NF |
| urine | 30-3000 | 5 | NF | |||||
| [ | serum | 1000 | SPE with C18 and HILIC cartridge | LC-MS/MS | 6.5 | 10-500 | 0.13 | 2.5 |
| urine | 2.5-20 | 0.13 | 2.5 | |||||
| [ | plasma | 100 | SPE with Siphila i HILIX 96 well plate | LC-MS/MS | 4.5 | 0.1-20 | NF | 0.1 |
| [ | serum | 1000 | SPE with methacrylate styrenedivinyl benzene cartridge | LC-MS/MS | 10 | 0.1-20 | 0.1 | NF |
| urine | 0.1-20 | 0.1 | NF | |||||
| [ | serum | 100 | SPE with monospin CBA cartridge | LC-MS/MS | 4 | 1-25 | 0.5 | 1 |
| urine | SPE with monospin amide cartridge | 0.5-200 | 0.25 | 0.5 | ||||
| [ | urine | 400 | SPE with MCX cartridge | LC-MS/MS | 12 | 0.2-200 | 0.1 | 0.2 |
| This study | plasma | 100 | protein precipitation | 2D-LC-MS/MS | 15.5 | 1.0-200.0 | 0.3 | 1.0 |
| urine | 1.0-200.0 | 0.3 | 1.0 |
Table 3 Comparison with previous reported methods
| Ref. | Matrix | Sample volume/μL | Clean-up method | Analytical method | LC runtime/min | Linear range/(μg/L) | LOD/(μg/L) | LOQ/(μg/L) |
|---|---|---|---|---|---|---|---|---|
| [ | urine | 1000 | SPE with immunoaffinity column | LC-MS/MS | 6.5 | 0.05-400 | 0.02 | 0.05 |
| plasma | 0.05-400 | 0.02 | 0.05 | |||||
| [ | urine | 500 | protein precipitation | LC-MS/MS | 16 | 0.986-98.6 | NF | 0.986 |
| [ | blood | 1000 | SPE with C18 cartridge | LC-MS | 10 | 30-3000 | 5 | NF |
| urine | 30-3000 | 5 | NF | |||||
| [ | serum | 1000 | SPE with C18 and HILIC cartridge | LC-MS/MS | 6.5 | 10-500 | 0.13 | 2.5 |
| urine | 2.5-20 | 0.13 | 2.5 | |||||
| [ | plasma | 100 | SPE with Siphila i HILIX 96 well plate | LC-MS/MS | 4.5 | 0.1-20 | NF | 0.1 |
| [ | serum | 1000 | SPE with methacrylate styrenedivinyl benzene cartridge | LC-MS/MS | 10 | 0.1-20 | 0.1 | NF |
| urine | 0.1-20 | 0.1 | NF | |||||
| [ | serum | 100 | SPE with monospin CBA cartridge | LC-MS/MS | 4 | 1-25 | 0.5 | 1 |
| urine | SPE with monospin amide cartridge | 0.5-200 | 0.25 | 0.5 | ||||
| [ | urine | 400 | SPE with MCX cartridge | LC-MS/MS | 12 | 0.2-200 | 0.1 | 0.2 |
| This study | plasma | 100 | protein precipitation | 2D-LC-MS/MS | 15.5 | 1.0-200.0 | 0.3 | 1.0 |
| urine | 1.0-200.0 | 0.3 | 1.0 |
|
| [1] | LU Zhuliangzi, DENG Fenfang, BAI Zhijun, PENG Rongfei, TAN Lei. Determination of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone in urine and dust by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(9): 1025-1033. |
| [2] | JIN Yu’e, ZHANG Lange, ZHOU Jingxian, MA Jinjing, YUAN Lili, XIAO Ping, WANG Guoquan. Determination of 17 bisphenol compounds in human urine by solid supported liquid-liquid extraction-ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(9): 1014-1024. |
| [3] | YANG Xinyi, QIN Weijie. A large-scale method for the enrichment and identification of N-glycopeptides in microscale plasma samples [J]. Chinese Journal of Chromatography, 2025, 43(9): 996-1004. |
| [4] | WANG Huawei, SHI Shiyu, LIU Ling, CHEN Ding, LYU Zhixian, SONG Ziyi, WANG Youjie, SONG Lulu, MEI Surong. Internal exposure characteristics and health risk assessment of organophosphate esters in urban residents [J]. Chinese Journal of Chromatography, 2025, 43(6): 630-639. |
| [5] | ZHAO Xiaoying, KANG Hui, WANG Yanyan, LI Wenhui, CHEN Ming, KE Chan, QIN Feng, KANG Xixiong. Simultaneous determination of 10 phthalate metabolites in urine by ultra performance liquid chromatography -tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(6): 640-649. |
| [6] | ZHANG Guiyuan, ZHAN Zhen, TAO Weiguo, ZHANG Hao. Efficient capture and proteomics analysis of urinary extracellular vesicles by affinity purification [J]. Chinese Journal of Chromatography, 2025, 43(5): 508-517. |
| [7] | CHENG Xianhui, YU Wenjing, WANG Dongxue, JIANG Liyan, HU Lianghai. Enriching plasma exosomes for proteomic analysis using a phosphatidylserine-imprinted polymer [J]. Chinese Journal of Chromatography, 2025, 43(5): 539-546. |
| [8] | FENG Zhuangzhuang, LIN Xiao, BAO Dejun, HU Xiaojian, ZHANG Haijing, ZHU Ying, ZHANG Xu. Determination of four oxidative stress biomarkers in human urine using solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(4): 317-325. |
| [9] | LI Yilan, YUAN Huiming, CAO Jingtian, ZHENG Yidi, LI Lan, GAO Peifeng. Open experiment: quantitative proteomics analysis of thyroid-cancer tissue slices using ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(3): 275-282. |
| [10] | ZHENG Haijiao, ZHAO Yaming, WU Xiaofeng, XU Hai, JIA Qiong. Comprehensive instrumental analysis experiment: determination of gallium using inductively coupled plasma mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(3): 289-294. |
| [11] | LIU Sijia, ZHAO Furong, ZHANG Yalian, SUN Xiaoyu, ZHANG Mengmeng, HOU Kun, CAO Yunfeng. Determination of three metabolites of thromboxane A2 and 8-iso-prostaglandin F2α in urine by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(2): 148-154. |
| [12] | LUO Xuan, ZHANG Jun, ZHU Dingji, HUANG Kejian, YANG Ning, LIU Xiaofeng, LUO Qiulian. Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(2): 164-176. |
| [13] | XU Fei, LIU Tianping, GUAN Yajin, HAO Weichao, WEN Dingsheng, XIE Shuilin, BIE Yanan. Analysis of ischemic stroke biomarkers based on non-targeted metabolomics [J]. Chinese Journal of Chromatography, 2025, 43(2): 139-147. |
| [14] | WANG Zihao, XU Mengfei, LI Beini, WU Ping, WU Wei. Determination of eight phthalate metabolites in urine of pregnant women and evaluation of neonatal birth outcomes based on solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(1): 60-67. |
| [15] | XUE Yufan, SHANG Ting, CUI Juntao, ZHAO Lingjuan, LI Pei, ZENG Xiangying, YU Zhiqiang. Determination of ten bisphenols and five parabens in urine by solid supported liquid-liquid extraction and liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(9): 827-836. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||