Chinese Journal of Chromatography ›› 2025, Vol. 43 ›› Issue (10): 1154-1161.DOI: 10.3724/SP.J.1123.2025.01004
• Articles • Previous Articles Next Articles
SONG Xinli(
), ZHU Shuqi, WU Yuxin, ZHONG Liyan, LIU Yuqing
Received:2025-01-03
Online:2025-10-08
Published:2025-09-24
Supported by:CLC Number:
SONG Xinli, ZHU Shuqi, WU Yuxin, ZHONG Liyan, LIU Yuqing. Determination of trace polychlorinated biphenyls in environmental water samples by solid-phase microextraction-gas chromatography-tandem mass spectrometry using carbon nanotube composite microspheres materials[J]. Chinese Journal of Chromatography, 2025, 43(10): 1154-1161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2025.01004
| Compound | Retention time /min | Quantitive ion pair | Qualitative ion pair | ||
|---|---|---|---|---|---|
Collision energy/eV | Monitored transition (m/z) | Collision energy/eV | Monitored transition (m/z) | ||
| 2,2′,5,5′-Tetrachlorobiphenyl (PCB-52) | 8.7 | 34 | 292.0/220.0 | 34 | 292.0/222.0 |
| 2,2′,4,5,5′-Pentachlorobiphenyl (PCB-101) | 10.3 | 34 | 326.0/256.0 | 34 | 324.0/254.0 |
| 2,3′,4,4′,5-Pentachlorobiphenyl (PCB-118) | 11.5 | 32 | 324.0/254.0 | 32 | 326.0/256.0 |
| 2,2′,3,4,4′,5′-Hexachlorobiphenyl (PCB-138) | 11.9 | 20 | 360.0/290.0 | 20 | 358.0/288.0 |
| 2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB-153) | 12.3 | 20 | 358.0/288.0 | 20 | 360.0/290.0 |
| 2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (PCB-180) | 13.6 | 36 | 394.0/324.0 | 36 | 396.0/326.0 |
Table 1 Retention times and MS parameters of the six polychlorinated biphenyls (PCBs)
| Compound | Retention time /min | Quantitive ion pair | Qualitative ion pair | ||
|---|---|---|---|---|---|
Collision energy/eV | Monitored transition (m/z) | Collision energy/eV | Monitored transition (m/z) | ||
| 2,2′,5,5′-Tetrachlorobiphenyl (PCB-52) | 8.7 | 34 | 292.0/220.0 | 34 | 292.0/222.0 |
| 2,2′,4,5,5′-Pentachlorobiphenyl (PCB-101) | 10.3 | 34 | 326.0/256.0 | 34 | 324.0/254.0 |
| 2,3′,4,4′,5-Pentachlorobiphenyl (PCB-118) | 11.5 | 32 | 324.0/254.0 | 32 | 326.0/256.0 |
| 2,2′,3,4,4′,5′-Hexachlorobiphenyl (PCB-138) | 11.9 | 20 | 360.0/290.0 | 20 | 358.0/288.0 |
| 2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB-153) | 12.3 | 20 | 358.0/288.0 | 20 | 360.0/290.0 |
| 2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (PCB-180) | 13.6 | 36 | 394.0/324.0 | 36 | 396.0/326.0 |
Fig. 2 Effects of (a) extraction time, (b) agitation speed, (c) sample pH value and (d) ionic strength on the extraction performance of the six PCBs (n=3)
| Compound | Linear range/(ng/L) | r | LOD/(ng/L) | LOQ/(ng/L) |
|---|---|---|---|---|
| PCB-52 | 0.03-1000 | 0.998 | 0.01 | 0.03 |
| PCB-101 | 0.03-1000 | 0.996 | 0.01 | 0.03 |
| PCB-118 | 0.07-1000 | 0.996 | 0.02 | 0.07 |
| PCB-138 | 0.07-1000 | 0.995 | 0.02 | 0.07 |
| PCB-153 | 0.07-1000 | 0.995 | 0.02 | 0.07 |
| PCB-180 | 0.10-1000 | 0.993 | 0.03 | 0.10 |
Table 2 Linear ranges, correlation coefficients (r), LODs and LOQs of the six PCBs
| Compound | Linear range/(ng/L) | r | LOD/(ng/L) | LOQ/(ng/L) |
|---|---|---|---|---|
| PCB-52 | 0.03-1000 | 0.998 | 0.01 | 0.03 |
| PCB-101 | 0.03-1000 | 0.996 | 0.01 | 0.03 |
| PCB-118 | 0.07-1000 | 0.996 | 0.02 | 0.07 |
| PCB-138 | 0.07-1000 | 0.995 | 0.02 | 0.07 |
| PCB-153 | 0.07-1000 | 0.995 | 0.02 | 0.07 |
| PCB-180 | 0.10-1000 | 0.993 | 0.03 | 0.10 |
| Compound | 2 ng/L | 10 ng/L | 100 ng/L | |||
|---|---|---|---|---|---|---|
| Intra-day RSD/% | Inter-day RSD/% | Intra-day RSD/% | Inter-day RSD/% | Intra-day RSD/% | Inter-day RSD/% | |
| PCB-52 | 3.45 | 2.83 | 4.28 | 5.20 | 4.28 | 5.81 |
| PCB-101 | 1.64 | 2.91 | 7.03 | 9.12 | 2.70 | 4.04 |
| PCB-118 | 4.80 | 8.41 | 7.19 | 7.93 | 3.89 | 8.56 |
| PCB-138 | 5.12 | 4.72 | 3.31 | 3.79 | 6.19 | 5.29 |
| PCB-153 | 8.16 | 7.62 | 5.02 | 6.39 | 5.90 | 8.01 |
| PCB-180 | 7.94 | 6.21 | 3.92 | 4.81 | 9.38 | 7.31 |
Table 3 Intra-day and inter-day precisions of the six PCBs (n=3)
| Compound | 2 ng/L | 10 ng/L | 100 ng/L | |||
|---|---|---|---|---|---|---|
| Intra-day RSD/% | Inter-day RSD/% | Intra-day RSD/% | Inter-day RSD/% | Intra-day RSD/% | Inter-day RSD/% | |
| PCB-52 | 3.45 | 2.83 | 4.28 | 5.20 | 4.28 | 5.81 |
| PCB-101 | 1.64 | 2.91 | 7.03 | 9.12 | 2.70 | 4.04 |
| PCB-118 | 4.80 | 8.41 | 7.19 | 7.93 | 3.89 | 8.56 |
| PCB-138 | 5.12 | 4.72 | 3.31 | 3.79 | 6.19 | 5.29 |
| PCB-153 | 8.16 | 7.62 | 5.02 | 6.39 | 5.90 | 8.01 |
| PCB-180 | 7.94 | 6.21 | 3.92 | 4.81 | 9.38 | 7.31 |
| Adsorption material | Extraction method | Analytical method | Linear range /(ng/L) | LOD/(ng/L) | Extraction time/min | Samples |
|---|---|---|---|---|---|---|
| MIL-on-UiO [ | SPME | GC-FID | 1-50000 | 0.1-2 | 30 | water, orange juice |
| Co3N4@C3N5[ | SPME | GC-FID | 0.5-20000 | 0.17-61 | 40 | water |
| COF TFPB-BD [ | SPME | GC-MS/MS | 1-1000 | 0.08-0.35 | 50 | aquatic products |
| Pd-MONT [ | d-SPE | GC-MS/MS | 2-1000 | 0.26-0.82 | 4.5 | water |
| Fe3O4@MOF [ | MSPE | GC-MS/MS | 5-4000 | 1.1-1.6 | 32 | water |
| MWCNT@PS (this method) | SPME | GC-MS/MS | 0.03-1000 | 0.01-0.03 | 50 | water |
Table 4 Comparison of this method with other reported methods
| Adsorption material | Extraction method | Analytical method | Linear range /(ng/L) | LOD/(ng/L) | Extraction time/min | Samples |
|---|---|---|---|---|---|---|
| MIL-on-UiO [ | SPME | GC-FID | 1-50000 | 0.1-2 | 30 | water, orange juice |
| Co3N4@C3N5[ | SPME | GC-FID | 0.5-20000 | 0.17-61 | 40 | water |
| COF TFPB-BD [ | SPME | GC-MS/MS | 1-1000 | 0.08-0.35 | 50 | aquatic products |
| Pd-MONT [ | d-SPE | GC-MS/MS | 2-1000 | 0.26-0.82 | 4.5 | water |
| Fe3O4@MOF [ | MSPE | GC-MS/MS | 5-4000 | 1.1-1.6 | 32 | water |
| MWCNT@PS (this method) | SPME | GC-MS/MS | 0.03-1000 | 0.01-0.03 | 50 | water |
| Compound | Added level/(ng/L) | Recoveries/% | ||
|---|---|---|---|---|
| Rain water | Barreled drinking water | River water | ||
| PCB-52 | 2 | 83.1±2.7 | 85.4±4.2 | 110.3±8.7 |
| 10 | 87.5±3.9 | 82.4±6.1 | 92.1±4.3 | |
| 100 | 90.4±4.3 | 107.3±4.6 | 98.2±9.1 | |
| PCB-101 | 2 | 106.3±5.5 | 94.6±5.0 | 89.2±5.3 |
| 10 | 87.3±4.7 | 87.1±2.7 | 90.1±2.8 | |
| 100 | 94.2±2.8 | 92.6±8.4 | 82.9±5.4 | |
| PCB-118 | 2 | 97.4±7.2 | 86.6±3.6 | 94.8±7.7 |
| 10 | 87.3±5.0 | 109.3±7.9 | 102.4±9.2 | |
| 100 | 90.3±7.8 | 97.3±4.1 | 87.9±4.4 | |
| PCB-138 | 2 | 89.3±3.0 | 98.1±8.8 | 113.2±5.8 |
| 10 | 104.7±9.4 | 84.0±2.8 | 93.8±7.6 | |
| 100 | 97.3±2.4 | 95.3±3.5 | 99.1±4.3 | |
| PCB-153 | 2 | 92.6±3.8 | 106.1±7.3 | 90.2±7.1 |
| 10 | 87.2±7.3 | 98.3±6.8 | 96.4±4.6 | |
| 100 | 85.0±2.2 | 96.2±6.2 | 91.7±8.4 | |
| PCB-180 | 2 | 98.4±9.2 | 91.2±8.3 | 103.2±7.9 |
| 10 | 108.4±6.3 | 89.2±4.5 | 98.1±5.3 | |
| 100 | 93.6±3.2 | 100.6±5.8 | 92.7±3.3 | |
Table 5 Spiked recoveries of the six PCBs in environmental water samples (n=3)
| Compound | Added level/(ng/L) | Recoveries/% | ||
|---|---|---|---|---|
| Rain water | Barreled drinking water | River water | ||
| PCB-52 | 2 | 83.1±2.7 | 85.4±4.2 | 110.3±8.7 |
| 10 | 87.5±3.9 | 82.4±6.1 | 92.1±4.3 | |
| 100 | 90.4±4.3 | 107.3±4.6 | 98.2±9.1 | |
| PCB-101 | 2 | 106.3±5.5 | 94.6±5.0 | 89.2±5.3 |
| 10 | 87.3±4.7 | 87.1±2.7 | 90.1±2.8 | |
| 100 | 94.2±2.8 | 92.6±8.4 | 82.9±5.4 | |
| PCB-118 | 2 | 97.4±7.2 | 86.6±3.6 | 94.8±7.7 |
| 10 | 87.3±5.0 | 109.3±7.9 | 102.4±9.2 | |
| 100 | 90.3±7.8 | 97.3±4.1 | 87.9±4.4 | |
| PCB-138 | 2 | 89.3±3.0 | 98.1±8.8 | 113.2±5.8 |
| 10 | 104.7±9.4 | 84.0±2.8 | 93.8±7.6 | |
| 100 | 97.3±2.4 | 95.3±3.5 | 99.1±4.3 | |
| PCB-153 | 2 | 92.6±3.8 | 106.1±7.3 | 90.2±7.1 |
| 10 | 87.2±7.3 | 98.3±6.8 | 96.4±4.6 | |
| 100 | 85.0±2.2 | 96.2±6.2 | 91.7±8.4 | |
| PCB-180 | 2 | 98.4±9.2 | 91.2±8.3 | 103.2±7.9 |
| 10 | 108.4±6.3 | 89.2±4.5 | 98.1±5.3 | |
| 100 | 93.6±3.2 | 100.6±5.8 | 92.7±3.3 | |
|
| [1] | ZHANG Quan, WU Yutian, PENG Lei, BI Shan, ZHOU Yibing, LIN Ye, LIU Liya, CHEN Qingyuan, ZHOU Xue. Rapid screening of 125 pesticide residues in tea substitutes by multi-plug filtration cleanup method combined with gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(7): 805-814. |
| [2] | XIAO Gengpeng, LIAO Dandan, LI Guisheng, LUO Xiang, YUAN Lu. Determination of squalene and oxidized squalene in edible oil by gas chromatography-tandem mass spectrometry and evaluation of the thermal stability of squalene [J]. Chinese Journal of Chromatography, 2025, 43(7): 815-822. |
| [3] | NIE Wending, SHUAI Sijie, HU Ke, CUI Xiaolei, LI Tengfei. Determination of 18 polychlorinated biphenyls in milk by dispersive solid-phase extraction based on zeolitic- imidazolate-framework composite microspheres prior to gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2025, 43(6): 678-687. |
| [4] | CHENG Yingchao, GAO Yiyang, LI Xiaomin, CHEN Luyu, DU Fang, GUO Jie, MENG Yitong, SUN Min, FENG Juanjuan. Research advance of solid-phase microextraction based on covalent organic framework materials [J]. Chinese Journal of Chromatography, 2025, 43(2): 120-130. |
| [5] | LIU Jun, WU Jiangyi, LI Jintao, CHEN Nengwang, HUANG Xiaojia. Design and practice of undergraduate instrumental analysis experiment: analysis of polycyclic aromatic hydrocarbons in environmental water by solid-phase microextraction- liquid chromatography [J]. Chinese Journal of Chromatography, 2025, 43(10): 1177-1183. |
| [6] | WANG Lipan, DENG Zhiyong, SHI Shiyu, WANG Huawei, LIU Kang’an, LI Xiang, ZHANG Mingye, MEI Surong. Serum levels of polycyclic aromatic hydrocarbons and health risk assessment among children and adolescents [J]. Chinese Journal of Chromatography, 2025, 43(10): 1136-1144. |
| [7] | YUAN Keyu, XIONG Jun, YUAN Bifeng. Research advances in the transplacental transfer efficiencies of environmental pollutants [J]. Chinese Journal of Chromatography, 2025, 43(1): 13-21. |
| [8] | XIA Han, TONG Kaixuan, ZHU Zhehui, XIE Yujie, WU Xingqiang, CHANG Qiaoying, ZHANG Hongyi, FAN Chunlin, CHEN Hui. Rapid determination of 15 N-nitrosamines in air-dried yak meat using one-step QuEChERS-gas chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(5): 465-473. |
| [9] | YANG Chao, LIU Jinglong, XU Xiaojian, WU Lijuan, YIN Mingming, DAI Wei, HAN Qian. Determination of nine aromatic amines in water by cloud point extraction-gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(3): 296-303. |
| [10] | YI Congsheng, LIU Rui, WU Zhipeng, LIU Bo, DU Lei. Determination of 35 prohibited pesticide residues in Saussurea costus by modified QuEChERS method based on multi-walled carbon nanotubes coupled with gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(3): 282-290. |
| [11] | ZHANG Mingye, CAO Yan, LI Xiang, KOU Jing, XU Qitong, YANG Sijie, ZHENG Zhiyi, LIU Jun, MEI Surong. Exposure characteristics and health risk assessment of 97 typical chemical pollutants in human serum [J]. Chinese Journal of Chromatography, 2024, 42(2): 217-223. |
| [12] | HAO Qilong, WANG Jing, YU Liqing, ZHANG Haixia. Graphitic carbon nitride/metal-organic framework microextraction fiber for enriching volatile organic compounds in the exhaled breath of patients with lung cancer [J]. Chinese Journal of Chromatography, 2024, 42(12): 1189-1195. |
| [13] | WANG Junxia, XU Sijie, SUN Yueying, LEI Huihui, CHENG Yuanyuan, WANG Xuedong, ZHANG Zhan’en. Matrix solid-phase dispersion extraction of organophosphorus flame retardants in soil based on response surface methodology [J]. Chinese Journal of Chromatography, 2024, 42(1): 64-74. |
| [14] | HAN Weina, LIU Tongtong, WANG Lulu, HOU Xiaoyu, CAO Jin. Determination of 15 preservative allergens in cosmetics by gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(1): 75-83. |
| [15] | DU Jie, SUN Pengchao, ZHANG Menglu, LIAN Zete, YUAN Fenggang, WANG Gang. Preparation of porous boron nitride-doped polypyrrole-2,3,3-trimethylindole solid-phase microextraction coating for polycyclic aromatic hydrocarbon detection [J]. Chinese Journal of Chromatography, 2023, 41(9): 789-798. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||